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FOREWORD 
 
                                                                                                                                                                
 Semi-automated forces (SAF) are computer-generated entities used to represent enemy 
and friendly forces supporting the live players in a simulation.  SAF originated with the Defense 
Advanced Project Agency’s (DARPA) Simulation Networking (SIMNET) program.  They 
dramatically reduce the number of players needed to participate in virtual and constructive 
training exercises. They provide soldiers an intelligent adversary or friendly subordinate or 
adjacent unit.   Developers rely on computer science Artificial Intelligence methods to generate 
SAF behaviors.  They result from applying extensive sets of if/then rules known as combat 
instruction sets.   SAF behaviors for the most part are rule based and predictable.  They tend to 
follow doctrine closely with few surprises. 
 
 An enemy, subordinate or adjacent friendly computer-generated force that demonstrates 
more variable behavior should benefit training.  If the training audience can’t easily predict what 
will happen, they will learn to prepare for unanticipated actions and react to them.  They have to 
be prepared for unanticipated actions and react to them.   The present research builds on earlier 
work begun by Dr. Philip Gillis to develop behavioral models, based on data and behavioral 
science theory, that could influence the behavior and performance of computer-generated entities 
in a combat simulation.   
 

This report summarizes Phase I and Phase II of a Small Business Innovation Research 
project conducted by Micro Analysis and Design, Corp. of Boulder, Colorado. 
 
 The project was briefed to an audience consisting of representatives of  the U.S. Army 
Simulation, Training, and Instrumentation Command’s (STRICOM) Project Manager 
Warfighters’ Simulation (PM, WARSIM), Project Manager Training Devices (PM,TRADE) and 
Engineering Directorate on April 11,   2002.  There was a demonstration of how models 
representing training, aptitude, and sleep deprivation, running in an off-line server, could impact 
the behaviors and performance of OneSAF Testbed tank platoons. 
 

 
 

 
             STEPHEN L. GOLDBERG 
                        Acting Technical Director 
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IMPROVING SOLDIER FACTORS IN PREDICTION MODELS 
 
 
EXECUTIVE SUMMARY 
 
Research Requirement: 
 

In recent years, all branches of the military have been relying more heavily on simulation 
exercises for training soldiers, planning military operations, and as analysis tools for allocating 
budget resources.  These simulation exercises often have human and non-human participants 
[generally referred to as Computer Generated Forces (CGF)].  A problem with CGF is that they 
often do not behave as realistically as human participants would.  They are programmed to use 
doctrinally correct behavior reflecting soldiers that are fully trained under “normal” battlefield 
conditions.  CGF entities do not behave differently when they have been working for long 
periods of time without sleep or under extreme environmental conditions.  There is also currently 
no way to adjust CGF behaviors to reflect the different levels and types of training the soldiers 
may have received or their different aptitudes.  As a result, simulation exercises are not as 
effective as they could be. 
 

There are several factors that affect human performance; levels of training, environmental 
stressors, and soldier aptitude are a few.  Research into the impact these factors have on human 
performance is increasing our understanding of these effects at a rapid rate.  If the constructive 
simulations that the military is using for soldier training, operations planning, and resource 
projections are to be most effective, they need to be able to take advantage of the latest findings 
from the human performance research community.  However, to rewrite the constructive 
simulations every time a new human performance effect is understood and quantified would be 
so inefficient that new research would rarely be incorporated into the simulations.  What is 
needed is a tool that effectively and efficiently integrates realistic human performance variability 
into the behaviors of CGF entities in these simulations. 
 
Procedure: 
 

This project had three major objectives.  The first was to determine the effects of training 
and environmental stressors on human performance variables.  The second objective was to find 
a quantitative way to calculate these effects.  The third objective was to find an efficient way to 
incorporate these performance effects into the CGF behaviors of constructive simulations. 
 

To meet these objectives, several different algorithms needed to be either developed or 
found in the literature.  These included a training effects algorithm, algorithms for calculating the 
effects of aptitude and experience on performance, environmental stressor algorithms, and a 
methodology for combining the effects of each performance variable.  The search for these 
algorithms began with a review of the literature.  At the same time, a survey was developed and 
used to collect data directly from soldiers in the field.  The survey asked the soldiers to estimate 
the effect that their own training had on their performance. 
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The simulation platform selected as the target environment for testing and implementing 
these algorithms was the OneSAF Testbed Baseline (OTB) Version 1.0.  Rather than coding 
these algorithms directly into the OTB software, an alternate approach was implemented.  This 
approach used a client-server architecture and placed the algorithms in a server external to the 
client CGF. 
 
Findings: 
 

During our literature review, we found an extensive amount of research on the effects of 
training.  Four distinct learning curves were identified that are commonly accepted in the training 
and skill acquisition community: the power law, the exponential, the hyperbolic, and the logistic 
curves.  After the survey data were collected from soldiers, a mathematical methodology was 
developed to combine the data into learning rates and then fit to match both the power law curve 
and the exponential curve.  Other algorithms were also developed to model the effects of 
aptitude, five environmental stressors (cold, fatigue, heat, mission oriented protective posture, 
and noise), and experience on performance.  The software module that was developed to 
calculate all of these performance effects is called the Training Effects and STressor Integration 
Module (TESTIM). 
 

The OTB software was slightly modified to add a graphical user interface (GUI) that 
allows an OTB user to specify, for a selected entity, the amount and type of training that the 
entity has received for each of the taxonomic categories identified through the research.  The 
user also specifies the crewmembers’ initial proficiency prior to the training and which stressors 
will be in effect during a simulation run. 
 

For each simulation, the input values from OTB are passed to a Soldier Performance 
Server (containing TESTIM) via a Middleware software module that keeps track of which OTB 
entity is requesting the information.  The Soldier Performance Server contains a number of 
human performance models - each representing an OTB behavior.  The Middleware determines 
which model should execute for each performance request.  As the model executes, it 
communicates with TESTIM for needed stressor effects calculations (the training effects were all 
calculated prior to the run).  When the Soldier Performance Server model completes its 
execution, the requested performance value is sent back to OTB. 
 
Utilization of Findings: 
 

This server approach has significant advantages over embedding code for human 
behavior in OTB.  First, it is not invasive to OTB.  The Soldier Performance Server models can 
be modified to reflect new human performance research without requiring OTB changes.  
Models can be of varying types ranging from simple discrete event simulations to complex 
cognitive models. 
 

Second, this approach creates a number of opportunities for synergy between the Human 
Systems Integration (HSI) and training communities, and virtual simulation developers.   The 
HSI community has been developing human performance models of military operations for 
several years, many of which have been validated.  If an extensive list of behaviors from 
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simulations like OTB were developed, the wealth of HSI models could be used as a starting point 
for Performance Server models rather than starting from scratch. 
 

In addition, most HSI models have been designed and developed to help analysts identify 
“high driver” behaviors, that is, behaviors that are critical determinants of total system 
performance.  Training personnel and commanders who develop OTB scenarios to train soldiers 
can use this information to insure that the scenarios include practice on these critical tasks.  
Another opportunity for synergy exploits man-in-the-loop simulation as a data collection 
opportunity.  By collecting data on exactly what the human operator does during the simulation, 
network models of task performance could be extracted from the data for building additional 
Soldier Performance Server models.  This information could be passed on to the HSI community 
to help improve their models and build new ones, ultimately supporting the use of quantitative 
analyses to support system acquisition.

ix 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

x 



IMPROVING SOLDIER FACTORS IN PREDICTION MODELS 
 
 

CONTENTS 
                                                                                                                                                    Page     
 
Introduction..................................................................................................................................... 1 
Phase I Summary ............................................................................................................................ 1 
Phase II Objectives ......................................................................................................................... 4 
Literature Review............................................................................................................................ 6 
Data Collection ............................................................................................................................. 12 
Algorithm Development ............................................................................................................... 14 
Test-Bed Model ............................................................................................................................ 19 
TESTIM Software......................................................................................................................... 22 
Sensitivity Analysis ...................................................................................................................... 35 
Conclusions................................................................................................................................... 40 
Follow-On Recommendations ...................................................................................................... 41 
References..................................................................................................................................... 45 
Appendix A................................................................................................................................. A-1 
Appendix B ................................................................................................................................. B-1 
 
 

LIST OF TABLES 
 
Table 1. Resulting proficiencies based on training for each taxon. .............................................. 37 
Table 2. Resulting proficiencies based on decay for each taxon. ................................................. 38 
Table 3. Results of the Tukey HSD test for load time. ................................................................. 39 
Table 4. Results of the Tukey HSD test for subsequent track time. ............................................. 40 
 
 

LIST OF FIGURES 
 
Figure 1. Exponential learning curve.............................................................................................. 7 
Figure 2. Power law curve. ............................................................................................................. 7 
Figure 3. Top-level network of the test-bed model....................................................................... 20 
Figure 4. Animated view of the test-bed model during a simulation run. .................................... 21 
Figure 5. TESTIM main interface................................................................................................. 22 
Figure 6. TESTIM interface to select a performance effects set. ................................................. 22 
Figure 7. TESTIM interface to edit list of taxons......................................................................... 23 
Figure 8. TESTIM interface to edit list of training types. ............................................................ 24 
Figure 9. TESTIM interface to edit learning curve parameters. ................................................... 24 
Figure 10. TESTIM interface to edit innate proficiencies. ........................................................... 25 
Figure 11. TESTIM interface to edit decay rates.......................................................................... 25 
Figure 12. TESTIM interface to edit the heat stressor look-up table............................................ 26 
Figure 13. TESTIM interface to edit the cold stressor look-up table. .......................................... 27 
Figure 14. TESTIM interface to edit the noise stressor look-up table.......................................... 27 

xi 



Figure 15. TESTIM interface to edit the MOPP stressor look-up table. ...................................... 28 
Figure 16. TESTIM interface to edit the experience moderators. ................................................ 28 
Figure 17. TESTIM interface mapping Performance Server model tasks to the training taxons. 29 
Figure 18. TESTIM interface mapping Performance Server model tasks to stressor taxons. ...... 29 
Figure 19. OTB interface for the performance effects editor. ...................................................... 30 
Figure 20. OTB interface for entering stressor parameters........................................................... 31 
Figure 21. OTB interface for editing aptitude and experience parameters................................... 32 
Figure 22. OTB interface for entering training hours. .................................................................. 33 
Figure 23. Communication architecture integrating TESTIM and OTB...................................... 34 
Figure 24. Micro Saint submodel to calculate subsequent track time. ......................................... 34 
Figure 25. OTB simulation used for the sensitivity analysis. ....................................................... 36 
Figure 26. The effects of training for the planning taxon. ............................................................ 38 
Figure 27. Load and subsequent track times based on an entity’s proficiency for each taxon..... 39 
 
 

xii 



Introduction 
 
 A key decision made at the highest levels of any military is the choice between allocating 
resources to system acquisition versus allocating resources to maintain force readiness through 
training.  Furthermore, these issues arise not only at the highest levels of resource allocation, but 
also system design.  How do we trade off design expectations with training demands?  These 
resource allocation questions are increasingly being answered with computer modeling and 
simulation.  However, there are virtually no models that predict the effects of training or the 
combined effects of environmental stressors on soldier performance.  Until this deficiency is 
rectified, we can expect that decisions will be made that do not correctly value an investment in 
training.  What are needed, therefore, are models that link training and environmental stressors to 
performance in combat and combat support operations. 
 
 In December of 1998, Micro Analysis and Design, Inc. (MA&D) was awarded a Phase I 
SBIR entitled “Improving Soldier Factors in Prediction Models.”  The overall goal of the Phase I 
effort was to investigate algorithms, data structures, and a methodology for incorporating the 
combined effects of training and environmental stressors into a tool that could be used to 
influence human performance models.  The main purpose for developing this tool was to 
improve the realism of computer generated forces (CGF) in distributed simulations.  For Phase II 
of this project, we enhanced these algorithms and data structures and programmed them into the 
Training Effects and STressor Integration Module (TESTIM).   
 

Phase I Summary 
 
 This section briefly summarizes the work that was performed under Phase I.  For a 
complete description of all the work performed, see Archer, Walters, Yow, Carolan, and 
Laughery (1999).  Six tasks were performed to accomplish the overall goal.  First, we developed 
a model of the basic relationships between training and performance to be modeled in CGF.  
Next, we reviewed the relevant literature and ongoing projects in order to develop better 
algorithms to address the interactions amongst environmental stressors.  Third, we developed 
data structures and analytical methods within an available human performance modeling tool to 
support the relationships between training, environmental stressors, and performance.  These 
data structures were then populated with expert opinion data.  Empirical data sources were also 
identified to replace some of the estimated data during Phase II.  Finally, we identified a target 
environment for embedding these models into CGF in Phase II.  The remainder of this section 
describes the results of these tasks.         
 
Modeling Training Effects 
 

One of the main focuses for Phase I of this SBIR was to develop a model that included 
algorithms and data structures for including the effects of training in human performance models.  
Our strategy was to spend Phase I defining this structural model of training effects based upon a 
review of the literature and interviews with experts.  Only by developing a structural model and 
the list of variables to be included could a focused search for applicable data be made.   
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The challenge of this effort was to generalize training effectiveness across a variety of 
tasks.  Unlike environmental stressors such as heat or fatigue, training variables can vary for 
different kinds of tasks.  For example, if it is hot or if a soldier has gone a long time without 
sleep, the amount of heat stress and fatigue are the same for all of the tasks that the soldier 
performs, even though the environmental stressors affect different tasks in different ways.  With 
training, we need to consider how much training and what kind of training the soldier has 
received for each task.  A goal of this project was to generalize the effects of several training 
variables across all of the types of tasks that soldiers perform. 
 

The first step in generalizing training effects across a variety of soldier tasks was to 
develop a taxonomy or set of categories that could characterize combat tasks.  Work that has 
been done for environmental stressors such as heat, cold, fatigue, chemical agents, etc. have 
developed similar taxonomies for soldier tasks that include categories such as visual perception, 
auditory perception, fine and gross motor skills, and acts of cognition.  These are skill categories 
that may be degraded as a result of one or more environmental stressors.   
 

We quickly found ourselves struggling in our attempts to describe the effects of training 
on a skill like visual perception or acts of cognition.  We then decided to develop a taxonomy 
that was representative of the kind of skills that soldiers are trained on for combat missions.  Our 
initial taxonomy contained eight skill categories for training.  Our approach was to review the 
usefulness and completeness of this initial taxonomy and make necessary revisions to it, as we 
elicited the subject matter expert (SME) estimates and reviewed the empirical data necessary to 
implement the training algorithms and data structures.  The taxonomy was refined and now 
includes the following: 
 

1. Command and control 
2. Communications 
3. Planning 
4. Tactics and doctrine 
5. Technical proficiency with equipment 

 
The next step in the development of the training algorithms and data structures was to 

identify the training variables that we wanted to include.  The number of variables that exist in 
the training literature is far too extensive to include practically in our algorithm.  The goal was to 
select some meaningful variables that could 1) have some theoretical basis, 2) be complex 
enough to include important aspects of training, 3) be simple enough to be understandable and 
doable, 4) be generalizable to all taxon categories, and 5) affect both time and accuracy of human 
performance. 
 

The first variable we included in the algorithm is type of training.  The training types we 
included were classroom, simulator, and field training.  We also included a variable for the 
amount of each training type and the maximum amount that each training type could contribute 
to peak performance.  Training types and amounts could be mixed to achieve either peak 
performance or some percentage of peak performance.  For example, a user could define that the 
CGF could have some amount of classroom training, some other amount of simulator training 
and an additional amount of field training, none of which by itself would result in peak 
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performance.  Our data structure included a maximum percentage of peak performance that 
could be achieved by any one training type for any one training taxon category.  By this we mean 
that one type of training such as classroom may only be able to bring a trainee up to some 
percentage of peak performance.  In this case, supplementary training of another type would be 
necessary to reach peak performance.  In addition to a determination of the maximum 
contribution to peak performance for any one training type, we included the concept of a 
minimum requirement.  By this we mean that there may be some tasks that must have a 
minimum amount of one or more training types before peak performance can be reached.  
Finally, we used the following equation (Hancock & Bayha, 1992; Newell & Rosenbloom, 1981) 
to calculate task times and accuracies (i.e., the amount of performance attained) given the actual 
amount of training: 
 
 Y = KX-A 
 Where: 
  Y = task time (or accuracy) 
  K = worst case performance time (or accuracy) 
  X = amount of training 
  A = training constant. 
 

The simulation software Micro Saint was chosen as the human performance modeling 
tool to test our initial methodology.  The scenario chosen to demonstrate the capabilities of the 
developed algorithms was a simple movement to contact mission that included platoon-
maneuvering, engagement with several enemy patrols, and the occupation and defense of 
positions.  At that time, estimated values for all of the variables in our algorithms were used.   
 

After we developed and tested this methodology and began our search for empirical data 
on the effects of training in the Option phase, we quickly realized that it would be nearly 
impossible to find data in the format we needed.  Likewise, we felt that it would be difficult for 
trainers or soldiers to provide estimates for these values.  Our methodology for generating these 
learning curves was therefore changed in Phase II.  Because of this, no further discussion on the 
Phase I approach will be given.  Also, note that the results of our literature review on the effects 
of aptitude, training, forgetting, experience and environmental stressors on performance are 
discussed in a separate section. 
 
Potential Data Sources 
 
 Another focus for Phase I was to identify empirical data sources that might replace some 
or all of the estimated data during Phase II.  We initially proposed to populate the data structures 
of our training algorithm with expert opinion data.  These data were intended to serve as 
preliminary input to our algorithms.  The SME data could then be replaced as empirical data 
became available, depending on the estimated validity of the SME data and the cost associated 
with collecting empirical data.  Five potential empirical data sources were identified and 
reviewed that we believed might eventually replace the SME data: 
 

1. Army training plan and curriculum documents 
2. Published research studies 
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3. Performance data from the Combat Training Centers 
4. Home station training records 
5. The long-term evaluation of the Close Combat Tactical Trainer (CCTT) 

 
Target Environment 
 
 The final task for Phase I was to identify a target environment for embedding the training 
and stressor models in order to influence the behavior of CGF.  For the Phase I demonstration, 
we selected a Micro Saint network model of a tank platoon movement to contact scenario.  For 
Phase II we identified two target environments.  The first was the OneSAF Testbed Baseline 
Semi-Automated Forces (OTB SAF) CGF Version 1.0 package developed for the U.S. Army.  It 
allows the user to create and control entities on a simulated battlefield.  These entities replicate 
the SAFsim and SAFstation.  These components are typically run on separate computers 
distributed over a network, although the SAFsim and SAFstation can run on the same computer.  
The components communicate physical battlefield state and events among themselves through 
the Distributed Interactive Simulation (DIS) protocol and command, control, and system 
information through the Persistent Object (PO) protocol. 
 

The other platform that we identified as a target environment was the Command, Control, 
and Communications Simulation (C3SIM) evaluation test-bed.  Due to time constraints, only 
OTB was actually used in Phase II. 
 

Phase II Objectives 
 

The primary goal of the Phase II effort was to expand upon the technical feasibility for 
including training effects and environmental stressors in CGF entities on synthetic battlefields.  
To accomplish this goal, we identified four technical objectives: 
 

1. Improve and expand the training effects and combined stressor algorithms 
demonstrated in Phase I 

 
2. Integrate TESTIM into targeted CGF environments and run experiments to assess the 

functionality and validity of the performance effects produced by TESTIM 
 

3. Estimate the validity of input data, training algorithms, and demonstration results 
 

4. Analyze targeted training data sources to replace some or all of the estimated data 
obtained from the SMEs during the Phase I Option task 

 
Based on the four technical objectives listed above, we conducted the following six tasks.  
Task 1.  First, we added an aptitude dimension to the training and stressor algorithms.  

Aptitude can have an impact on performance through a number of different mechanisms.  For 
example, there is evidence that general aptitude translates into more proficient learning skills and 
therefore faster learning (Gottfredson, 1997; Sticht, Armstrong, Hickey, & Caylor, 1987).  
General ability has also been shown to predict job performance, and in more complex jobs it 
does so better than any other single personal trait, including education and experience (Mchenry, 
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Hough, Toquam, Hanson, & Ashworth, 1990).  These findings, along with others, are discussed 
in the literature review section of this report. 
 

Task 2.  Next, as part of our on-going effort to make human performance and CGF 
models more realistic, we added performance decay functions (based on time since training) to 
our training algorithm.  We felt that a model that included these functions would be a more 
powerful tool for considering how training can benefit performance. 
 
 Task 3.  For our third task, we developed a graphical user interface to support the input of 
data required by TESTIM.  This interface, described in more detail later in this report, allows a 
user to choose from default values for the required training data structures.  The user can also 
modify these values to reflect different experimental conditions.  Furthermore, the interface can 
be used to indicate which tasks will be modified in the CGF models and to specify the taxonomic 
categories that each of those tasks will fall into. 
 
 Task 4.  We integrated TESTIM with a simple OTB scenario of a tank platoon 
engagement via a Soldier Performance Server.  This task was aimed at incorporating improved 
decision making capabilities and modifying the physical performance characteristics of OTB 
entities.  Two examples of physical human performance tasks are loading a weapon system and 
engaging an enemy target.  TESTIM modifies the physical human performance tasks by 
affecting the time it takes the OTB entities to perform these tasks.  The decision-making 
capability of OTB entities was also changed such that less predictable and more human like 
decision-making representations were made.  Another aspect of this demonstration was the use 
of OTB environmental variables as input to the environmental stressors that we included in the 
TESTIM.  OTB continually updates a number of variables that reflect the current status of the 
battlefield environment.  These variables include things like wind speed and direction, cloud 
cover, rainfall, temperature, and relative humidity.  The server approach is described in detail 
later in this report.     
 

Task 5.  For the fifth task of Phase II, we measured the face validity of TESTIM’s 
algorithms using results from the scenario developed in Task 4.  That is, we tested whether the 
results from TESTIM and the OTB scenario matched what we expected to observe.  Whether the 
algorithms make use of SME data or empirical data, a measure of the validity will determine 
how much confidence we can place in results obtained using these algorithms.  We ran 
simulation trials varying the amounts of training on each skill and training type and collected 
resulting performance measures.   
 

Task 6.  For the final task, we analyzed existing empirical data sources to replace some or 
all of the estimated data obtained from the Phase I Option task.  After a review of the sources 
identified in Phase I, as well as numerous research reports, we were only able to obtain empirical 
data on the effects of gunnery training on performance (e.g., Graham & Smith, 1990; Hart, 
Hagman, & Bowne, 1990; Hoffman & Melching, 1984; Kraemer & Smith, 1990; Morrison, 
Drucker, & Campshure, 1991; Turnage & Bliss, 1989).  Most of the training research involved 
very simplistic tasks or non-Army tasks that did not relate to our taxonomy.  In those few cases 
where specific Army tasks were studied, the dependent variables that were monitored could not 
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be related to the information we needed for our algorithms.  Therefore, we did not replace the 
estimated data.  

   
As part of our statement of work, we also proposed to integrate the algorithms and data 

structures developed in Phase I with algorithms that have been developed by the Army Research 
Institute as a part of the development of the Human Performance Model (HPM) and C3SIM (for 
a review, see Gillis & Hursh, 1999).  As mentioned in the Phase I summary, C3SIM and the 
HPM were not used due to time constraints.  Furthermore, the algorithms used in the HPM to 
model the effects of experience and aptitude did not fit well with our data structures.  For these 
reasons, we did not incorporate them into TESTIM. 
 

Literature Review 
 
 A major component of both Phase I and II of this project was an extensive analysis of the 
literature from several different research areas.  The literature from industrial and educational 
psychology, education, and training were all mined for relevant reports.  Additionally, the 
Defense Technical Information Center reports were searched for any Department of Defense 
funded research that may link performance improvement with training.  It was hoped that a 
thorough review of relevant literature would enable us to construct algorithms that represent the 
specific amount of performance improvement or decrement that can be linked to specified 
amounts of training, time since training, stressors, aptitude, and experience.  
 
Skill Acquisition 
 

Our literature review revealed several theories on skill acquisition that have been 
developed to explain learning on different types of tasks.  These theories attempt to explain the 
relationship between training and performance by curve fitting.  In a review of nearly 3,000 
research titles and abstracts, Lowry, Rappold, and Copenhaver (1992) identified four major 
learning curves: the power law, hyperbolic, exponential, and logistic curves. 
 

The power law is one of the most extensively supported learning curves.  It fits a wide 
variety of skill data such as perceptual-motor skills, motor skills, and cognitive skills.  Prior to 
Newell and Rosenbloom’s extensive research on the power law in 1981, skill acquisition 
research was dominated by exponential, hyperbolic and logistic functions.  All of these shapes 
are still found in current learning curve literature.  Of these three shapes, the most prevalent and 
the main contender against the power law is the exponential function.  When data are fitted with 
both power and exponential curves, it is often difficult to distinguish which is the “better” fit by 
conducting a simple examination of the curves (Lane, 1986).  Generally an extensive statistical 
analysis is required to determine which function more accurately models the data.   
 

The hyperbolic curve is a special case of the power law and it tends to fit empirical data 
almost as well as the power law does (Lane, 1986).  On the other hand, the logistic curve has a 
unique shape.  It produces S-shaped or sigmoid curves.  This shape is usually found when the 
empirical data are performance ratings provided by instructors (Lane).  Since the hyperbolic 
curve is a special case of the power law and the logistic curve does not fit most empirical data we 
chose not to use them as models for our survey data. 
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We chose to concentrate our efforts on fitting our SME data with the power law curve 

and the exponential curve.  There are two key differences between the power law curve and the 
exponential curve.  First, the exponential curve increases more rapidly than the power law curve; 
consequently it has a steeper slope (see Figure 1).  Second, in the power law the time spent 
training on a task (T) is directly related to the resulting proficiency on the task (see Figure 2).  
With the exponential law, the relationship between time spent training and resulting proficiency 
is indirect.  
 

 
 
Figure 1. Exponential learning curve. 
 

 
 
Figure 2. Power law curve. 
 

Both the power law curve and the exponential curve are increasing functions with 
negative acceleration.  Negative acceleration means that as the time spent training increases the 
relative benefit of the training decreases.  We will be using the following equations and notations 
for the two curves:   

 

Y = A - (A – Po)(T + 1)-R     (Power function) 
Y = A - (A – Po) e-RT            (Exponential) 
Where: 

T = time spent training  
Y = proficiency level after training 
R = rate of learning  
A = highest level of proficiency that can be attained with training (asymptote) 
Po = proficiency on 1st trial (i.e. innate proficiency/ worst case).  
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 Bayesian approach.  As part of our review, we also considered the use of probabilistic 
reasoning using Bayesian networks as a potential modeling framework.  Bayesian network 
technology is a recently developed technique for speeding up the process of doing probabilistic 
reasoning with large complex relational networks.  Using Bayesian networks for diagnostic 
assessment and profiling trainee proficiency is a rapidly developing area of research (e.g., 
Nichols, Chipman, & Brennan, 1995).  Bayesian networks have been primarily used in learning 
research as a mechanism to diagnose the knowledge, skills, and/or strategies that are used in 
solving a particular problem, making a decision, or performing an action.  However, they could 
in principal be used to infer or predict expected performance based on patterns of training and 
practice. 
 

There are a number of reasons why we decided against using Bayesian networks to model 
the relationship between training and performance.  These reasons include the following: 1) the 
power law has a strong empirical research base and theoretical framework, 2) Bayesian modeling 
requires defining prior probabilities encoding the hypothesized relationship between training and 
performance (this would involve more time and resources for SME time and for model 
validation), and 3) the power law fits well with the task oriented approach of task network 
modeling tools such as Micro Saint and with the Army’s Mission Essential Task List (METL) 
oriented approach to planning training. 
 
Retention 
 

Another important factor in determining the effects of training on performance is the 
amount of time that has passed since the training was received.  The rate at which skills are 
forgotten is often characterized as a negatively accelerating function based on time since 
training.  But unlike the literature on skill acquisition, no general curves on retention (decay) are 
widely accepted.  Decay data reported in the literature vary widely in terms of the time span over 
which they occur; measured in terms of seconds, minutes, hours, days, weeks, months, and years.  
Some researchers agree that decay can be represented as a power function similar to the ones 
used to estimate the rate of learning, and they have attempted to quantify this function (e.g., 
Rose, Czarnowlewski, Gragg, Austin, Ford, Doyle, & Hagman, 1985).  However, results from 
long-term research have lead Bahrick and Hall (1991) to conclude that although a significant 
amount of what influences decay is determined by acquisition processes, acquisition 
performance alone is not an accurate predictor of decay.    
 

Research has shown that the rate at which skills and knowledge decay can depend on 
factors such as the amount and quality of training received at the time of initial learning.  Skills 
that are trained to automaticity (mastery training) tend to decay at a slower rate than tasks trained 
to just proficiency.  Also, the methods used to assess decay can suggest different decay rates.  
For instance, Luh (1922) used five different measures to index decay: recognition, 
reconstruction, written reproduction, recall by anticipation, and relearning.  Luh found that while 
decay functions for all measures were negatively accelerated, they had different rates of decline.   
Finally, while some skills fall sharply during the time immediately following acquisition and 
decline more slowly as additional time passes, other skills do not begin to show decay until 
several months after acquisition.  For example, perceptual-motor skills (e.g., driving, flight 
control, and sports skills), show very little forgetting over long periods of time.  In contrast, 

8 



procedural skills, which require a sequence of steps, such as how to use a text processor or how 
to run through a checklist for turning on a piece of equipment, tend to be quickly forgotten 
(Rose, 1989).  For these reasons, we chose to concentrate our efforts on fitting our SME data 
with a negatively accelerating function similar to the power function (just as was done for the 
learning curves).   
 
Environmental Stressors 
 

Other variables that are used in our algorithms to make soldiers’ behaviors in CGF 
models more realistic are environmental stressors.  Performance on a task or mission under ideal 
conditions may differ drastically from performance on the same task or mission under stressful 
conditions.  The environment in which military operations (tasks and missions) are conducted 
can be very stressful.  Incorporating stressors into simulation models allows users to estimate 
mission performance under “worst case” conditions. 
 

A review of the relevant literature produced performance degradation factors for the 
following stressors: heat, cold, noise, fatigue, circadian rhythm, Mission Oriented Protective 
Posture (MOPP gear), and altitude (Bradley & Robertson, 1998; Micro Analysis and Design 
Incorporated & Dynamics Research Corporation, 1999; Walters, French, and Barnes, 2000).  
However, some of these degradation factors have been correlated to affect a specific set of 
taxonomical categories (e.g., visual, numerical, cognitive skills and other taxons).  Still, these 
taxons are fairly generalizable and users should be able to relate their own taxons to these taxons. 
 

Empirical and theoretical research were also examined on the combined effects of 
multiple stressors and how to model them.  Although an abundant amount of empirical data has 
been collected on the separate effects of stressors on performance, there has only been a small 
amount of work done on the combined effects of some stressors.  Therefore, difficulties occur 
when equations are developed that try to generalize the interactive effects of multiple stressors.  
Two different human performance modeling tools were identified that contain equations that 
address the combined effects of stressors: the Integrated Performance Modeling Environment 
(IPME) (Micro Analysis and Design Incorporated, 1999) and the Improved Performance 
Research Integration Tool (IMPRINT).  Both of these tools have equations that are reasonable 
for modeling many interactions amongst stressors.  However, they may not be reasonable for all 
interactions.  Note that our work is not dependent on the IPME or IMPRINT tools for 
functionality.  Rather, they are sources for equations that attempt to explain the complex 
relationship between multiple stressors and performance.  For now, we have decided to use the 
following equation (Harris, 1985) to combine the effects of multiple stressors: 

 
DFT = � i = 1, ni�DFi 
Where: 

DFT = Total degradation factor 
  DFi = The ith ordered degradation factor  
  n = Number of degradation factors. 
 

9 



Using the above equation, when two or more stressors are combined, the overall degradation is 
less than the sum of the individual degradations.  The most severe stressor will have a full effect 
on performance.  As additional stressors are added, they will have less impact on performance. 
Aptitude 
 
 Our review of the literature also revealed that aptitude has a significant effect on 
performance, especially as it relates to the level of performance that can be achieved with a 
specified level of training.  For example, a 1969 study done for the U.S. Army found that 
individuals in the bottom 20% of their ability distribution required up to five times as much 
instruction and practice to attain minimal proficiency in basic military tasks such as rifle 
assembly (for a review, see Gottfredson, 1997; Sticht, Armstrong, Hickey, & Caylor, 1987).  
General ability has also been shown to predict job performance, and in more complex jobs it 
does so better than any other single personal trait, including education and experience 
(Gottfredson, 1997).  For example, the Army’s Project A, a study conducted in the 1980s to 
improve the recruitment and training process, found that general mental abilities were highly 
correlated with technical proficiency and soldiering proficiency (Mchenry, Hough, Toquam, 
Hanson, & Ashworth, 1990). 
 

For this project, the effects of aptitude were calculated for task times and decision 
accuracy using data from Project A.  An important step in our approach is to assign an entity’s 
aptitude level.  A general aptitude factor can be extracted from skill batteries such as the Armed 
Forces Vocational Aptitude Battery (ASVAB), intelligence category (CAT) and standard 
intelligence tests (Gottfredson, 1997).  The ASVAB is a battery of tests administered to enlistees 
prior to entering the military services.  In this project, an entity’s aptitude level can be assigned 
in one of two ways: 1) selecting the Military Occupational Specialty (MOS) of the entity 
(soldier) performing the task or 2) selecting the minimum ASVAB cutoff score of the soldier that 
can perform the task (this is described further in the OTB Interfaces section of the report). 
  

In our approach, each task is weighted based on how much of the following taxons 
(skills) are required to perform the task: visual, numerical, cognitive, fine motor discrete, fine 
motor continuous, gross motor light, gross motor heavy, communications (read/write), and 
communications (oral) (This is because the effects of aptitude vary depending on the task).    
Then, the aptitude of the entity being modeled is compared to the aptitude for the MOS 12B 
(baseline), which is the designation for a tank Platoon Leader.  Based on this difference and the 
task-to-skill weightings, a multiplication factor is pulled from a lookup table (generated from 
Project A data) and used to change the task time or decision accuracy.  If the aptitude of the 
entity is the same as the baseline, then the task time (accuracy) does not change.  If the aptitude 
of the entity is less than the baseline, then the task time increases (or the accuracy decreases).  If 
the aptitude of the entity is greater than the baseline, then the task time decreases (or the 
accuracy increases). 
 
Experience 
 

Several researchers have investigated the relationship between experience and 
environmental stressors.  Some of the findings are summarized by Hancock (1986).  In 1962, 
Fitts argued that training should continue past an often arbitrary and minimal criterion of 
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performance since this increases resistance to stress, fatigue and interference.  Mackworth (1950) 
found that less experienced workers suffered more disruption by increasing heat stress, and this 
was manifested earlier than for skilled workers.  Similar results were found for several different 
types of tasks: Morse code message transmission, Naval lookout duty, and physical exercise.  
Blockley and Lyman (1951) found the same pattern of results for flight performance under heat 
stress.  In a seven-year research project called TADMUS (Tactical Decision Making Under 
Stress), researchers (sponsored by the Office of Naval Research) studied and developed 
guidelines on training, simulation, decision support, and display principles to mitigate the impact 
of stress on decision-making.  Cannon-Bowers and Salas (1998) outline the overall background, 
research approach, and paradigm used by TADMUS.  One of their major findings and assertions 
is that exposing trainees to stress can inoculate them from the impact of stress, and that highly 
competent individuals and teams will be more resilient to the effects of stressors.  Unfortunately, 
we were not been able to find useful empirical data for our algorithms from which to affect 
performance based on experience.  We did, however, feel it was important to include experience 
within TESTIM.  Therefore, a simple performance multiplier was put in TESTIM along with the 
capability for users to enter their own experience effects.   
 
Empirical Data 
 

Our literature review also focused on finding empirical data for specific Army tasks.  
Gunnery training was chosen because of the relatively standard way in which performance is 
measured.  All empirical data reviewed on gunnery training dealt with the effects of simulator 
training on performance.  Research has consistently shown positive effects for several different 
types of simulators [e.g., the Institutional Conduct of Fire Trainer (I-COFT), the Videodisk 
Gunnery Simulator (VIGS), and TopGun].  Gunnery skills improve during training on simulators 
and these skills have been shown to transfer to the real world (e.g., Abel, 1986; Sterling, 1996; 
Turnage & Bliss, 1989).  Unfortunately, no data has been found on the effects of actual live-fire 
gunnery training or classroom training on gunnery performance.  Furthermore, as Morrison, 
Drucker, and Campshure (1991) have noted, there has been little research done that has directly 
addressed the effects of training on the retention of gunnery skills.    
 

Much of the research discussed here may hold promise for developing algorithms to 
impact performance of CGF.  However, several obstacles exist to the creation of these algorithms 
based on the data found in the studies reviewed.  First, the studies described here primarily use 
comparative statistics to evaluate statistically different scores on pre- and post-training measures 
of performance or effectiveness.  While these statistics provide support for the worthiness and 
effectiveness of the training interventions, they say little about how much improvement can be 
expected following the training event.  Second, few of the studies provide enough detail 
regarding the duration of the training event, or the training event is a long term effort which 
confounds the ability to isolate the effects of training from those of learning.  Finally, most of the 
measures of performance used to evaluate training effectiveness are outcome measures.  That is, 
most measures take the form of an overall achievement score on some dependent variable prior 
to and after exposure to training.  While such measures may offer insight into the amount of 
overall improvement that can be attributed to training, they say little about the specific impacts 
and what aspects of performance are responsible for increases in overall scores.  To be most 
useful to efforts for encoding the effects of training on performance, the tasks under investigation 
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should be granular enough to allow for specific explanation of performance changes (e.g., 
reduced time to perform the task, increased decision accuracy, etc.). 
 

Data Collection 
 

As an alternative to the unavailable empirical data relating the effects of training on 
soldier performance, we collected SME estimates of training effects on performance.  In order to 
make the process of obtaining these estimates as easy and non-intrusive as possible, we 
developed a questionnaire asking soldiers about their own training and their perception about 
how that training affected their performance.  This questionnaire is shown in Appendix A.   
 
 We believe estimates from SMEs are valid sources of data for several reasons.  First, a 
study performed for the Nuclear Regulatory Commission (Engh, Yow, & Walters, 1998) 
investigated how well SME data on task times and workload values compared to task times and 
workload values from an experiment performed in a high fidelity nuclear plant simulator.  Over 
70% of the task times from the experiment fell within a 90% confidence interval of the data 
collected from SMEs.  This substantial agreement between SME data and empirical data 
produces confidence that, if collected properly, SME data can be valid.   
 

A second point of confidence in SME data comes from standard practices in the 
simulation industry.  It is an accepted procedure to use SMEs to judge the validity of the output 
of simulations.  Proceedings from the SIMVAL99 Conference held in January (Glasow & Pace, 
1999) stated that SMEs are an essential part of simulation validation.  We concluded that if 
SMEs are judged to be accurate enough to validate our simulations, then their data is accurate 
enough to be used as input to our simulations.  
 

In order to eventually generalize the training effects data to a wide variety of soldier 
tasks, we wanted to obtain training and performance data on general categories of tasks that 
soldiers are trained on and are familiar with.  As a result, we chose the tasks in the Mission 
Training Plan (MTP) for Armor platoons (ARTEP 17-237-10) as the focus for our SME data 
collection effort.  The MTP is categorized into seven Battlefield Operating System (BOS) 
categories containing a total of 38 tasks.  MTP tasks represent broad categories of soldier tasks 
that can be decomposed into increasing levels of detail that cover the majority of combat tasks 
that soldiers are trained to perform. 
 

To obtain the best and most recent estimates, we requested troop support from field units.  
In November and December of 2000, we interviewed soldiers at Fort Riley, Kansas and Fort 
Carson, Colorado to obtain training effects estimates.  At each location, we interviewed eight 
Platoon Leaders and eight Platoon Sergeants for a total of 32 interviews.  From these interviews 
we obtained the data we needed to develop the learning curves described later in this report.  
During the interviews, we had the soldiers complete our questionnaire.  In the questionnaire, the 
soldiers were asked about the training they received on the 38 tasks from the ARTEP MTP and 
on tank gunnery.  The primary focus of the questionnaire was how much and what kind of 
training the soldiers had received over the last year and how this training had affected their 
performance. 
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In order to fit the SME data to both the power law and exponential curve, we needed to 
determine the highest level of proficiency that could be attained on a task with the training type 
in question.  This highest level of proficiency is referred to as the asymptote.  Usually the 
asymptote occurs naturally within the data.  In this data collection effort, there was a high 
probability that the asymptote would not emerge from the data set because we were only looking 
at one year of a soldier’s training, not his entire career.  Another reason that an asymptote may 
not have emerged from the data is that Army tasks are typically trained to criterion and not to 
mastery level.  To compensate for this, we asked the soldiers to estimate the highest level of 
proficiency they could reach with each type of training for each of the 38 tasks. 
 

In addition to the asymptote for each type of training for each task, we also needed to 
determine a soldier’s innate proficiency on a task.  A soldier’s innate proficiency is the level of 
proficiency with which the soldier could perform a task during his first attempt.  It was assumed 
that the soldier had performed the task for the first time after some minimal or basic training.  
Because it cannot be guaranteed that the soldiers had performed each of the 38 tasks for the first 
time in the last year, we asked them to provide us with an estimate of their innate proficiencies. 
 

There were two different parts to our questionnaire.  The first part dealt with innate 
proficiency and asymptotic proficiencies for each task.   The second part of the questionnaire 
required them to tell us how much training they received in the last year.  To help us collect 
decay information, we broke the last year into quarters.  For each quarter the soldiers provided us 
with number of hours of training and proficiencies.  Each soldier provided us with the following 
data for each of the 39 tasks in the survey: 
 

1. Innate proficiency  
2. Asymptote for classroom training 
3. Asymptote for simulator training 
4. Asymptote for field training 
5. Beginning proficiency for the first quarter 
6. Ending proficiency for all quarters 
7. Number hours of classroom training during each quarter 
8. Number hours of simulator training during each quarter 
9. Number hours of field training during each quarter 

 
 Of the 32 questionnaires collected, more than half of them had to be removed from the 
final data set.  A large percentage of the questionnaires were removed because of the soldiers’ 
misinterpretation of the questions.  For example, the most common problem with the results was 
that the soldiers wrote the same number of hours down for every single task in a single quarter.  
Our assumption is that they did not have the time to think about how much training they had had 
on each specific task.  For our purposes, this type of data was of no use because specific training 
data was needed to calculate the learning curve parameters.  Another problem that we ran into 
with some of the platoon leaders' data was that they had not yet received a full year of training at 
the time the data was collected. 
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Algorithm Development 
 
 The first step in creating the taxon learning curves was to convert the data that we 
collected from the SMEs (which was at the task level) to the taxon level.  To accomplish this 
conversion, the SMEs were asked to decompose each task into our five taxons.  This information 
was given in percentages.  For example, the MTP task Assault an Enemy Position (17-3-0220) 
could be broken down into the taxonomy as follows: 
 

�� Planning 12.5% 
�� Communication 15% 
�� Command and control 35% 
�� Technical proficiency with equipment 15% 
�� Tactics and doctrine 22.5% 

 
Converting Survey Task Data to Taxon Data 
 

Using the percentages described above, we initially attempted to perform the conversion 
from task to taxon data using what is called the least squares method (for a review, see 
Wackerly, Mendenhall III, & Scheaffer, 2002).  Unfortunately, this method resulted in a loss of 
detail and produced a tremendous amount of statistical error in the SME data.  In turn, numerous 
questionnaires no longer provided useful proficiency data for a taxon.  Additionally, the taxon 
data that could be used resulted in several learning rates that appeared to be too slow.  We 
concluded that the SME data at the task-level contained too many errors for the least squares 
method to provide useable data. 
 

The alternate method chosen to convert the task data to taxon data was mathematically 
less rigorous than the least squares method.  We applied SME task-taxon mappings to determine 
which tasks had the highest percentages of the different taxons in order to generate the taxon-
level data.  
 
Creating Learning Curves from Taxon Data 
 
 Using the taxon-level data, we created learning curves for each training type and taxon in 
our taxonomy.  The first learning curve to which we fit our data was the power curve.  The 
power law that we defined earlier has three parameters that were derived from the taxon-level 
soldier data: 
 

1. Asymptote (A) 
2. Innate proficiency (Po)  
3. Learning rate (R) 

 
Asymptotic proficiencies (A) and innate proficiencies (Po) were taken directly from the 

taxon data; the learning rates (R) were calculated.  In our questionnaire, we asked the soldiers for 
the number of hours they spent training (for each training type) over the past year.  We also 
asked for the beginning proficiency and the ending proficiency for each quarter of the past year.  
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All of these values, along with asymptotes and innate proficiencies, were used to calculate the 
learning rates for each taxon in our taxonomy. 
 
Embedded Learning Curve 
 
 The major challenge in calculating the learning rates was to determine how much each 
training type contributed to the overall change in the soldiers’ proficiencies from quarter to 
quarter.  We only knew that the soldiers had x hours of classroom training, y hours of simulator 
training, and z hours of field training that resulted in a percentage increase in his or her 
proficiency for the taxon.  We did not know how much of that percentage increase could be 
attributed to the classroom, simulator, or field training.  Because we did not have this 
information, we could not solve for the different training type learning rates individually. 
 
 To deal with this problem, we developed a nonlinear equation (see Equation 1, h(r)) that 
combined the three different power curves (one for each training type).  This equation allowed us 
to calculate the learning rates simultaneously.  The final equation is shown below: 
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 (1) 

 
In this equation, the variables are: 
 

�� a1, a2, a3 = Asymptote 1st training type experienced, asymptote 2nd training type, 
asymptote 3rd training type 

�� po = Innate proficiency  
�� pb = Beginning proficiency  
�� t1, t2, t3 = Time spent in 1st training type, time spent in 2nd training type, time spent in 

3rd training type 
�� r1, r2, r3 = Learning rate for 1st training type, learning rate for 2nd training type, 

learning rate for 3rd training type. 
 
This equation is an embedded power curve.  The outside of the curve is simply the power curve 
for the third type of training.  However, instead of a factor of 1 being added to the T (t3) value, 
there is another equation being added to the T value.   
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         (2)   

 
Equation 2 (g(r)) represents the amount of time it would take a soldier to reach the 

proficiency that the soldier reached with the second type of training using the third type of 
training.  Within this equation, there is another equation (see Equation 3, j(r)) with the power 
curve form and a different equation being added to the T value (t2).  The equation being added to 
the T value is the amount of time it would take for the soldier to reach the proficiency the soldier 
reached with the first type of training if the soldier had the second type of training. 
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             (3)                     

 
 There is one more equation with the power curve format in this combined learning curve; 
it is the power curve for the first type of training a soldier receives.  In Equation 4 (k(r)), the T 
value (t1) does not have a factor of 1 added to it.  Instead, there is a ratio raised to some power 
added to the T value.  This is the amount of time it would have taken the soldier to reach his 
beginning proficiency for the quarter (pb) with only the first training type.  In other words, we do 
not know how much time it really took the soldier to reach pb, but we assumed that the soldier 
only had one type of training up to that point.  With this assumption, we can determine how long 
it took the soldier to reach that proficiency based on his innate proficiency (po).  If the soldier’s 
beginning proficiency for the quarter is equal to the soldier’s innate proficiency (i.e. it was the 
soldier’s first time to perform the task), then the ratio simplifies to 1.   Then this equation simply 
reverts to the general power curve. 
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                (4)                                
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Solving a System of Embedded Learning Curves 
 

The embedded learning curve shown in Equation 1 accounts for multiple learning types, 
which means we can solve for all the learning rates, for a particular taxon, simultaneously.  To 
solve an equation with multiple unknown variables, it is necessary to have a system of unique 
equations.  If the system has the same number of equations as there are unknown variables, then 
standard numerical methods can be used to solve for the system’s unknown variables.  If there 
are more equations in the system than unknown variables, there is a high probability that the 
system is inconsistent.  Below is a simple example of inconsistency for a system of several 
equations with only one unknown variable. 
 

2x = b1 
3x = b2 
4x = b3 

 
This system is only solvable if the right-hand sides are in the ratio 2:3:4 (Strang, 1988).  

If the right-hand sides are not in this ratio, then the system is typically considered to be 
unsolvable.  The best way to deal with inconsistent systems is “to choose the x that minimizes 
the average error in the m equations” (Strang). 

 
 A popular definition for the average error is the sum of the squares.  The sum of squares 
is defined as follows for the linear system ax = b: 
 

2

1
)(�

�

��

m

i
ii bxa�  

 
When there is an exact solution to the system, then the error �  is zero.  In most cases, there will 
not be an exact solution and the error function will be a parabola.  The minimum of a parabola is 
when the first derivative of the function equals zero.  So the solution to the system ax = b that 
produces the minimum average error is when 
  

0)(...)( 111 ������ mmm abxaabxa
dx
d�  

 

This equation simplifies to 
aa
bax T

T
�  and is referred to as the least squares solution (Strang, 

1988).  This idea can be applied to inconsistent linear systems of m equations with n unknown 
variables.  The least squares solution for a system with multiple unknowns is very similar to the 
solution for a system with one unknown, bAAAx TT 1)( �

� . 
   

In the case of solving for three learning rates for a particular taxon, we are dealing with 
an inconsistent system; for each taxon there are approximately one hundred embedded learning 
curve equations.  Therefore, we needed to use a least squares method to manipulate each system 
before we could calculate the learning rates. 

17 



The primary difference between the embedded learning curve systems and the system 
used to explain the least squares method is that the embedded learning curve is nonlinear and the 
example is linear.  Our system of nonlinear equations has the form 

 
f1(r1,r2,…,rn) = b1 
f2(r1,r2,…,rn) = b2 

. 

. 

. 
fm(r1,r2,…,rn) = bm 
 

The error function for this system is � , and like the linear system, when the 

error function 

�
�

��

m

i
ii brfr
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2))(()(
��
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�

�  , there is an exact solution to the system.  If we defined a new nonlinear 
system G )(r

��

 where G ibi rfr �� )()(
��

i
�

then the error function can be simplified and written in 

vector notation )()( rGr T �

)( Gr
����

�� . 
 
For the linear system, the least squares solution is when the first derivative of the error 

function equals zero.  In the nonlinear case, the least squares solution is when the gradient of the 
error function equals zero.  The gradient of the error function simplifies as follows: 

 

)()(*2)(
))()(()(

rFrJr
rGrGr

T

T
����

�����

��

���

�

�  

 
Where )(rJ

�

is the Jacobian matrix of G )(r
��

.   
 
To find the least squares solution to an inconsistent nonlinear system, we must find when )(r

�
��  

equals zero.  Specifically, when this is true for our embedded learning curve system, then r 
contains the learning rates for each training type for a taxon. 
 
Numerically Solving the Embedded Learning Curve Systems 
 

Once our embedded learning curves systems were manipulated using the least squares 
methodology, we needed to determine which numerical method would give us the most accurate 
learning rates.  There are several different methods available for finding the zeros (minimums) of 
a nonlinear system of equations.  The two primary numerical methods are Newton/quasi-Newton 
methods and gradient methods.  Newton and quasi-Newton methods for nonlinear systems 
usually converge quickly; unfortunately, they are not guaranteed to converge if the initial starting 
point is poor.  Gradient methods converge more slowly than the Newton and quasi-Newton 
methods, but they are usually guaranteed to converge to the correct answer even when a poor 
initial guess is provided (Burden & Faires, 1997).  
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After testing both Newton and gradient numerical methods, we decided to use a gradient 
method.  There were two different gradient methods that we tested: the Steepest Descent method 
and the Conjugate Gradient method.  Both of these methods utilize the least squares 
methodology for nonlinear systems.  The difference between these two methods is that the 
Steepest Descent method uses first-order derivates while Conjugate Gradient uses second-order 
derivates (Aoki, 1971).  In general, using second-order derivates accelerates the method’s rate of 
convergence. 

 
The Conjugate Gradient method requires calculating a matrix referred to as a Hessian 

matrix.  For the algorithm to work correctly, the Hessian matrix must be positive-definite.  If the 
matrix is not positive-definite, the method will not converge as expected (Aoki, 1971).  For our 
purposes, there was no guarantee that the Hessian matrix of embedded learning curves would be 
positive-definite.  Therefore, the Conjugate Gradient method would not work.  
 

The Steepest Descent method does not converge as quickly as the Conjugate Gradient 
method, but it does not require the calculation of a Hessian matrix.  After thoroughly testing this 
the Steepest Descent method, we found that it calculated the correct learning rates with three 
decimal places of accuracy.  To obtain this level of accuracy requires a large number of iterations 
and a very low tolerance (i.e., tolerance = 1e-20).  We, therefore, used the Steepest Descent 
method to calculate the best approximations to the learning rates for each taxon in our taxonomy.  
These calculated learning rates were considered to be the learning rates for the average soldier.  
To get the innate proficiency and asymptotes for the average soldier for each taxon, we 
calculated the averages using the taxon-level data.  We ended up with an embedded learning 
curve for each taxon.  
 
Performance Decay Functions 
 
 The data collected from the questionnaire also served as input for building functions that 
represent a decrease in proficiency for periods of time soldiers do not receive training for 
particular tasks.  The methodology for developing these decay functions was similar to that of 
the learning curves. 
 

Test-Bed Model 
 

The purpose of the test-bed model was to provide us with a way to test our training and 
stressor algorithms (i.e., our calculator) before we tried to integrate them with OTB.  This test-
bed model allowed us to ensure that our calculator produced significant effects on performance.  
It was also helpful in testing the communication links between our calculator and Micro Saint 
(the simulation software used to develop the model).   
 
 Our intent was to have the calculator affect task times and task accuracies within the test-
bed model.  For example, the calculator could affect how long it takes to track a target in the 
“Attack” network of the test-bed model.  It could also affect the probability of a fire hitting a 
target or the probability of spotting an opponent.  In addition, we wanted to affect decisions that 
are made within the model (e.g., the decision of whether to use smoke to confuse the enemy). 
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Test-Bed Model Scenario 
 

The scenario modeled was a U.S. tank platoon conducting a hasty defense.  It was based 
on an example scenario described in the book Modeling Human and Organizational Behavior: 
Application to Military Simulations (Pew & Mavor, 1998).  The example scenario is a detailed 
vignette of a hasty defense that involves a platoon of M1 tanks defending a battle position.  The 
outcome of the vignette is that the U.S. tank platoon defeats the enemy and they successfully 
defend the battle position.   

 
It was our intent to use the vignette as a basis for our model.  The primary difference 

between the vignette and the actual test-bed model was that we wanted to add variability.  We 
wanted there to be the possibility that the enemies did not always come from the same direction 
and that the US tank platoon leader and sergeant did not always make correct decisions.  In the 
end, we wanted to be able to affect the performance of both the U.S. tanks and the enemy tanks 
based on the soldiers’ training. 
 

One of the components of the vignette that we inserted into the test-bed model was that 
the enemy would make its initial approach from one of three directions.  Once the enemy made 
its initial approach, additional groups of enemy tanks would come to help in the attack (i.e., two 
separate groups of T-80 tanks and some BMPs1).  Another component of the vignette was that 
the U.S. tanks would have artillery and attack helicopters to back them up in their hasty defense.  
The platoon leader could ask for these when he thought it was time to use them.  Ideally, the 
platoon leader should use the artillery to destroy tanks that were in the initial approach.  Then, 
when the platoon leader has determined that his forces have slowed down the enemy sufficiently, 
he can ask for permission to retreat back to the Main Company Battle Position. 
 

Figure 3 illustrates the task network diagram of the test-bed model.  An animated version 
of the activities occurring in the model was also developed and can be seen in Figure 4.  
Performance was measured in the test-bed model environment by the dependent variables (model 
output) listed below:   
 

�� Mission success – a successful mission is one in which the enemy retreats and the 
friendly forces remain in their position 

�� Decision to request helicopter support 
�� Decision to request artillery 
�� Decision to shoot smoke for camouflage 

 

1
Start

2
Receive 
Mission

3
Plan 
Defense

4
Rehearse 
mission

5
Move to, 
Occupy BP

6
Defend BP

7
Done with 
Mission

 
 
Figure 3. Top-level network of the test-bed model. 
 
                                                 
1 BMP = boyevaga mashina pakhoty, a Soviet armored personnel carrier. 
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Figure 4. Animated view of the test-bed model during a simulation run. 
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TESTIM Software 
 

Another focus for Phase II of this SBIR was the development of a software tool that 
allows users to select or develop training taxonomies, training types, and parameters for learning, 
decay, stressors, and experience.  This tool, called TESTIM, resides on the same computer as the 
Performance Server in a Microsoft Windows operating system.  Figure 5 shows the main 
interface of TESTIM.  This is the first interface a user sees when the tool is started.   
 

 
 
Figure 5. TESTIM main interface. 
 
 File Menu.  A user begins using TESTIM by selecting either a library or a previously 
developed user performance effects set by selecting the “Open” option of the File menu.  A 
performance effects set consists of a training taxonomy, training types, learning curve and decay 
parameters, stressors, experience, and aptitude modifiers.   Once, selected, the “Open” option 
displays a list of the currently saved performance effects sets including the default library set.  
Figure 6 shows the “Open Performance Effects Set” interface.  When a set is selected, a 
temporary working copy of the selected set is created.  All of the changes that a user makes to 
any aspect of the selected set are actually made to the working copy.   
 

 
 
Figure 6. TESTIM interface to select a performance effects set. 
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When the working copy of a performance effects set has been modified, the changes can 
be made permanent using the “Save” command.  However, changes cannot be made to the 
default Library set.  When the default Library set is the selected set, the “Save” command is 
disabled. 
 

The “Save As” command saves the changes made to the working copy of the currently 
selected set with a different file name.  Users can open a library or user performance effects set, 
make changes to the working copy, and then save the changes as a new performance effects set 
using the “Save As” command. 
 

The “Exit” command will close the TESTIM development software tool.  If changes have 
been made to the currently selected performance effects set since the most recent save, a warning 
will be displayed. 
 

Edit menu.  The Edit menu allows users to modify one or more components of an 
existing performance effects set.  In order to edit an existing set, the user must first open the set 
from the File menu.  When there is no set currently open, the options on the Edit menu are 
disabled.  To cancel changes that have been made to the current set, users can either open a 
different set or select the “Exit” command from the File menu. 
 

The “Training Taxons” menu option allows users to change the name of existing taxons, 
add new taxons, or delete taxons.  Selecting the “Training Taxons” option will display a list of 
the training taxons stored in the current performance effects set as shown in Figure 7.  The 
“Cancel” button returns the user to the main TESTIM interface without committing any changes 
that were made to the current data set.  The “OK” button saves the current items in the taxon list 
to the working copy of the current set.  If any changes are made to the training taxons in the 
current performance effects set these changes must be saved (using the “Save” or “Save As” File 
Menu) before the “To Training Taxons” menu option of Map Tasks menu can be used.     
 

 
 
Figure 7. TESTIM interface to edit list of taxons. 
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The “Training Types” menu option allows users to change the name of existing training 
types, add new training types, or delete training types.  Selecting the “Training Types” option 
will display a list of the training types stored in the working copy of the current performance 
effects set as shown in Figure 8. 
 

 
 
Figure 8. TESTIM interface to edit list of training types. 
 

The “Learning Curve Parameters” option, shown in Figure 9, allows users to enter 
parameters required to calculate learning curves for each taxon by training type.  The drop-down 
menu box at the top-left of the interface allows users to choose a training type from the list of 
training types for the current effects set.  The table (grid) in the center of the interface shows the 
learning curve parameters for the current effects set.  The leftmost column of the grid displays 
the taxon list in the current effects set.  This is a locked column and cannot be modified from this 
interface.  The two fields to the right of the taxon list allow users to edit the proficiency 
asymptote and learning rate for the learning curve function.   
 

 
 
Figure 9. TESTIM interface to edit learning curve parameters. 
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 The default library performance effects set uses a power function for the learning curve.  
However, users that have their own data will be able to select either a power function for the 
learning curve of an exponential function.  If the power function is selected, the user will need to 
enter an innate proficiency for each training taxon using the interface shown in Figure 10.  The 
left column showing the taxon list is locked and cannot be modified from this interface.  Innate 
proficiency is defined as a soldier’s proficiency without any formal training.   
  

 
 
Figure 10. TESTIM interface to edit innate proficiencies. 
 

The “Decay Parameters” option (see Figure 11) allows users to enter decay rates for each 
taxon.  The column displaying the taxons is locked and cannot be modified from this interface. 
 

 
 
Figure 11. TESTIM interface to edit decay rates. 
 

The “Stressors” option on the Edit menu contains four submenu options.  Each option 
allows users to edit multipliers for task times and accuracies for each stressor taxon.  Figure 12 
shows the interface for editing the “heat” stressor multipliers.  Users cannot edit the “Relative 
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Humidity” column or any of the column headers.  Currently, there are some taxons for which we 
do not have data.  These tables are populated with 1.00 to indicate no performance decrement. 
 

 
 
Figure 12. TESTIM interface to edit the heat stressor look-up table. 
 

The “Stressor Effects” frame in the top-right corner of the interface allows users to switch 
between task time tables and the accuracy tables.  If a user has modified some or all of the cells 
in a table and wishes to start over with the library data, he or she can do so by clicking the 
“Library Data” button.  The “Cancel” button will return the user to the main TESTIM interface 
without making any changes to the working copy of the selected effects set.  The “OK” button 
will save the changes to the working copy of the effects set and return the user to the main 
interface.  In addition, a user can copy rows of data and paste the data into other rows using the 
“Copy” and “Paste” buttons.  If a user wishes to copy multiple rows at a time he must use the 
“Ctrl” key to do this.  If the user picks a row in the middle of his row set then the entire set will 
be unselected.  To paste, the user must select the same numbers of rows as he copied using the 
“Copy” button. 
 

Figure 13, Figure 14, and Figure 15 show look-up tables used to degrade task times due 
to the effects of cold temperatures, noise, and MOPP gear, respectively.  As with the heat effects 
look-up table, users cannot edit the leftmost column data or any of the column headers. 
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Figure 13. TESTIM interface to edit the cold stressor look-up table. 
 
 

 
 
Figure 14. TESTIM interface to edit the noise stressor look-up table. 
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Figure 15. TESTIM interface to edit the MOPP stressor look-up table. 
 

The “Experience” option of the Edit menu allows users to moderate the performance of 
task times and accuracies.  The experience value is a simple multiplier that increases the task 
times for low experience and decreases the task times for high experience.  The experience 
modifier increases the accuracy for high experience and decreases the accuracy for low 
experience.  Figure 16 shows the experience moderator interface. 
 

 
 
Figure 16. TESTIM interface to edit the experience moderators. 
 
 Map tasks menu.  This menu contains options that allow users to map tasks in 
Performance Server models to the training and stressor taxonomies.  When a user selects the “To 
Training Taxons” option, the application automatically scans the Performance Server model for 
any new tasks.  If there are new tasks these will be added to the grid on the form “Map Tasks to 
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Training Taxons” shown in Figure 17.  The user then weights each task based on the percentage 
of the task that represents each taxon.   
 

 
 
Figure 17. TESTIM interface mapping Performance Server model tasks to the training taxons. 
 
  The “To Stressor Taxons” option on the Map Tasks menu allows users to weight each 
task to the stressor taxons in the same manner that they were weighted for training taxons.  
Figure 18 shows the interface for mapping the tasks to stressor taxons. 
 

 
 
Figure 18. TESTIM interface mapping Performance Server model tasks to stressor taxons. 
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Apply menu.   The “Make Default” option of the Apply menu causes the currently 
selected performance effects set to be the one that is used for all of the performance effects 
calculations for the Performance Server.  When a user selects an effects set and then selects this 
option, TESTIM creates an OTB reader (RDR) file containing the names of the training types 
and taxons.  The user must then directly copy this RDR file to a directory where it can be read by 
the OTB simulation.  The OTB simulation will read this file and display the appropriate names in 
the OTB performance effects editor to obtain input from the OTB user. 
 
 Help menu.  The “About TESTIM” option presents information on the version and date 
of the TESTIM software.   
 

OTB Interfaces 
 

This section describes the interfaces that were added to OTB for obtaining the necessary 
TESTIM input to calculate effects that are used in the Performance Server models.  All of these 
interfaces are accessed from the Server Editor in OTB.  A performance effects icon located on 
the tool bar along the top of the OTB display bring ups the Server Editor shown in Figure 19. 
 

 
 
Figure 19. OTB interface for the performance effects editor. 
 
 The interface for the server editor contains two sections: Unit and Server Options.  In the 
Unit section, a tree diagram indicating the unit structure is shown.  This tree allows a user to 
specify which entities are to be affected by TESTIM.  For example, Figure 19 shows a tank 
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platoon.  If the top node labeled 0A1 is selected when the user presses the “Apply” button, then 
the effects will be applied to all of the tanks in that platoon.  If one of the lower nodes on the tree 
(i.e., an individual tank) is selected when the user presses the “Apply” button, then only that tank 
will receive the effects.  In order for an OTB simulation to be affected by TESTIM, the option 
labeled “Training/Stressor Effects” must be checked under the Server Options section.  When the 
“Training/Stressor Effects” server is checked three new sections appear in the editor: Stressors, 
Personnel Characteristics and Training Effects.   
 
 Stressors.  The “Stressors” section allows users to specify which stressor effects to use 
during the simulation by clicking the check box next to each stressor.  More than one stressor can 
be selected.  Some of the stressors have parameters that must be defined in order for the stressor 
algorithms to work correctly.  Pressing the “Parameters” button next to a stressor produces 
another interface containing the appropriate input fields. 
 

 
 
Figure 20. OTB interface for entering stressor parameters. 
 

Depending on which stressors are checked in the performance effects editor, the user will 
have to enter different parameters using the interface shown in Figure 20.  For fatigue, the user 
must specify the sleep schedule prior to the beginning of the battle exercise simulation.  It is 
assumed that the exercise will start sometime on the second day.  For noise, the input parameters 
are volume (in decibels - Preferred Speech Interference Level (dB PSIL)) and distance from the 
noise source (in feet).  For MOPP, the user must select the level of MOPP gear that is being 
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worn by the soldier.  The heat and cold stressor functions use variables from the OTB 
environmental model.  The heat stressor function uses the air temperature and relative humidity 
as input parameters.  The cold function uses air temperature and wind speed as input parameters.  
These input parameters are available on a moment-to-moment basis from the OTB 
environmental model.  If the heat or cold stressors are checked on the performance effects editor 
interface and the environmental model in OTB is not turned on, the stressors will have no effect 
on performance.  The OTB environmental model is turned on using the command line argument 
“-allowenv” when OTB is initially loaded.   
 
 Personnel characteristics.  The section labeled “Personnel Characteristics” allows users to 
select aptitude and experience performance modifiers.  The “Parameters” button allows users to 
enter parameters for both the aptitude and experience functions.  Figure 21 shows the parameters 
interface for aptitude and experience.  Users can define aptitude in one of two ways.  They can 
either select an MOS or they can select an ASVAB cutoff score. 
 

 
 
Figure 21. OTB interface for editing aptitude and experience parameters. 
 
 Training effects.  The “ Training Effects” section allows users to specify how much 
training an entity received for each training type and taxon pair.  The user also specifies the 
number of weeks since that training occurred and the initial proficiency for each taxon just prior 
to the training.  The “On” and “Off” buttons allow the user to specify whether to use the training 
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effects during the simulation.  Figure 22 shows the interface that allows users to enter the 
number of training hours.   
 

 
 
Figure 22. OTB interface for entering training hours. 
 

Communication Architecture 
 
 The final major focus for Phase II of this SBIR was to develop the architecture for 
communicating the performance variable values between TESTIM and OTB.  This architecture 
is illustrated in Figure 23 and includes three separate parts: the Performance Server, the 
middleware, and OTB.  The Performance Server contains TESTIM and the human performance 
models of the entity behaviors that we are trying to affect in OTB.  As described earlier, OTB 
contains interfaces that allow users to enter values that will be sent to TESTIM.  The 
Performance Server is on a separate computer from the machine that will be running OTB.  In 
between the two applications, there is middleware that manages the flow of data and keeps track 
of which entity needs what kind of performance value.  The middleware communicates with the 
Performance Server via Microsoft’s Component Object Model (COM) protocols and with OTB 
via DIS/HLA.   
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Figure 23. Communication architecture integrating TESTIM and OTB. 
 

At the start of a simulation, input parameters that were entered by the OTB user are 
passed over the network to TESTIM.  Then, as the OTB scenario executes, performance requests 
relating to various behaviors are passed to the Performance Server.  When the Performance 
Server receives a request for a value from OTB, the model indicated within the request will 
begin executing.  As each task in the model executes, a value will be sent to TESTIM indicating 
the need for a performance effect calculation.  The performance calculations will be modifying 
the baseline task mean time values that have been entered into the models during model 
development.  Variation in the actual task times in the model will come from drawing a 
distribution with the performance affected mean and the standard deviation.  Variation in model 
branching logic (to represent decision making) based on proficiency values was also built into 
the models.  The aggregated performance values are then sent back to OTB.   
 
 Using this approach, we can calculate the performance for OTB behaviors based on the 
training and stressor input values with very little modification of the OTB code.  However, one 
of the challenges in developing this architecture was identifying the performance variables 
(called hooks) in OTB that can be modified.  The hooks that were identified include: assault 
time, load time, subsequent load time, track time, subsequent track time, and the decision for 
determining whether to occupy an alternate position.  For each of these hooks, submodels were 
developed using the simulation software Micro Saint and included in the Performance Server.  
Figure 24 shows the submodel for subsequent track time.    
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Figure 24. Micro Saint submodel to calculate subsequent track time. 
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Sensitivity Analysis 
 

In order for the training and stressor algorithms to be useful and accepted by the user 
community, they need to accurately predict the effects of varying levels of training and stressors 
on performance.  One method for evaluating these algorithms is validation.  The Institute of 
Electrical and Electronics Engineers defines validation as "confirmation by examination and 
provisions of objective evidence that the particular requirements for a specific intended use are 
fulfilled." 
 

A variety of objective techniques are available for validation.  These include sensitivity 
analysis, consistency checks, and Turing tests.  A sensitivity analysis is performed by 
systematically changing the values of model input variables and parameters over some range of 
interest and observing the effect on model behavior.  As model input is changed, the output 
should change in predictable directions.  Unexpected effects may reveal invalidity.  The input 
values can also be changed to induce errors to determine the sensitivity of model behavior to 
such errors.  A sensitivity analysis can identify those input variables and parameters to the values 
of which model behavior is very sensitive.  Then, model validity can be enhanced by assuring 
that those values are specified with sufficient accuracy.  In this study, a sensitivity analysis was 
conducted on our training algorithms using OTB.  This analysis also allowed us to test the 
reliability of the TESTIM software, the performance editor interfaces in OTB, and the 
middleware.  Due to time constraints, a sensitivity analysis was not performed on the stressor 
algorithms.       
 
OTB Simulation 
 
 Figure 25 shows the OTB simulation developed for the sensitivity analysis.  The 
simulation contained an M1 tank platoon for the friendly forces and a T-72 M tank platoon for 
the enemy forces over the Fort Knox terrain database.  The mission for the friendly forces was to 
perform a hasty occupy position and the mission for the enemy forces was to perform an assault 
on the friendly forces.  Rules of engagement for both forces were set to free.  All other 
parameters in the simulation were kept at OTB default settings.   
 
Test Plan 
 

The default library within TESTIM consists of three training types (classroom, field, and 
simulator), five taxons for which soldiers can receive training (communication, command and 
control, planning, tactics and doctrine, and technical proficiency with equipment), decay rates for 
each taxon, five stressors (cold, fatigue, heat, MOPP, and noise), two experience levels, and 
multiple levels of aptitude.  In order to analyze TESTIM’s algorithms completely, over 3000 
combinations of these variables would need to be entered into the OTB test model.  Rather than 
perform such an extensive and time-consuming test, a reduced test plan was conducted to show 
the positive correlation between training and performance (i.e., as training increases, 
performance increases).   

 
The independent variable was the proficiency for the friendly M1 tanks.  This proficiency 

was the same for each taxon within a particular simulation run.  The values tested were 10, 20, 

35 



30, 40, 50, 60, 70, 80 and 90 percent proficiency.  Again, the effects of time since training, 
aptitude, stressors, and experience were turned off.  Three dependent variables were measured: 
mission success, load time, and subsequent track time.  A successful mission was defined as one 
in which all of the enemy tanks were destroyed (fire power or catastrophic kill) or the enemy 
tanks retreated.  Note that even under exactly the same environmental and mission parameters, 
the outcome of a mission is not always the same due to the variability within OTB.  Therefore, 
the OTB simulation was run ten times for each proficiency value to obtain a sufficient number of 
mission outcomes.  Because loading and tracking occurs throughout a simulation, the 
performance times for these tasks were only collected in one out of the ten simulation runs to 
reduce the amount of data collected.           

 

 
 
Figure 25. OTB simulation used for the sensitivity analysis. 
 

 Before the sensitivity analysis was started, we used the learning and decay functions to 
determine how a soldier’s proficiency changed based on different amounts of training.  It is the 
soldier’s proficiency that is used to adjust task times and accuracies within TESTIM.  Table 1 
shows the resulting proficiencies (in percentages) based on different amounts of training for each 
taxon.  The starting proficiency (before training) for each taxon and training type was 10%. 
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Table 1. Resulting proficiencies based on training for each taxon. 
 
 Hours of training 

Taxon / training type    10     20     30    40  

Planning     

 Classroom 50 51 51 51 

 Simulator 73 73 73 73 

 Field 76 82 85 87 

Communication     

 Classroom 35 39 41 42 

 Simulator 70 70 70 70 

 Field 76 82 85 86 

Command and control     

 Classroom 47 50 51 51 

 Simulator 75 78 79 79 

 Field 58 65 69 72 

Technical proficiency with equipment     

 Classroom 24 27 29 30 

 Simulator 38 43 45 47 

 Field 64 71 75 77 

Tactics and doctrine     

 Classroom 39 41 42 42 

 Simulator 33 38 40 42 

 Field 58 65 69 71 
 
Figure 26 graphically illustrates the effects of different amounts of field training on a 

soldier’s proficiency for the planning taxon.  The combined effects of zero and ten hours of 
classroom (C) and simulator (S) training are also included.  Table 2 shows the resulting 
proficiencies (in percentages) based on different amounts of decay for each taxon.  The starting 
proficiency (after training) for each taxon and training type was 90%. 
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Figure 26. The effects of training for the planning taxon. 
 
Table 2. Resulting proficiencies based on decay for each taxon. 
 
 Time since training (months) 

Taxon    6     12     18    24  

Planning 77 73 70 69 

Communication 75 70 67 65 

Command and control 76 71 68 65 

Technical proficiency with equipment 76 72 69 68 

Tactics and doctrine 85 83 82 81 
  
Results 
 
 Using an analysis of variance (ANOVA), a significant main effect was found for 
proficiency for both load time and subsequent track time [F(8,208) = 616.40, p < 0.01 and 
F(8,225) = 4920.64, p < 0.01, respectively].  As proficiency increased, the average load and 
subsequent track times decreased (see Figure 27).  A post hoc analysis, the Tukey Honest 
Significant Difference (HSD) test, was used to determine which proficiencies produced 
significantly different results.  Table 3 and Table 4 show that most of the differences were 
significant.  No significant effect was found for proficiency and mission success.    
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Figure 27. Load and subsequent track times based on an entity’s proficiency for each taxon. 
 
Table 3. Results of the Tukey HSD test for load time. 
 
 Proficiency 

Proficiency 10 20 30 40 50 60 70 80 90 

10  * * * * * * * * 

20 *   * * * * * * 

30 *   * * * * * * 

40 * * *  * * * * * 

50 * * * *    * * 

60 * * * *    * * 

70 * * * *      

80 * * * * * *    

90 * * * * * *    
* Comparison was significantly different, �FW = .01. 
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Table 4. Results of the Tukey HSD test for subsequent track time. 
 
 Proficiency 

Proficiency 10 20 30 40 50 60 70 80 90 

10  * * * * * * * * 

20 *  * * * * * * * 

30 * *  * * * * * * 

40 * * *  * * * * * 

50 * * * *  * * * * 

60 * * * * *  * * * 

70 * * * * * *   * 

80 * * * * * *    

90 * * * * * * *   
* Comparison was significantly different, �FW = .01. 
 
 The sensitivity analysis showed that, as expected, TESTIM’s algorithms have a 
significant effect on task performance within OTB.  The lack of any effect of training on overall 
mission success can be explained in two ways.  First, the M1 tanks used for the friendly forces 
are superior to the T-72 M tanks used for the enemy forces.  Typically, the enemy forces would 
use all of their ammunition early in a simulation.  By the time the enemy tanks reached the battle 
position, they had nothing left to fire and were destroyed by the friendly tanks  - even when the 
friendly forces took a significantly long time to perform loading and tracking tasks.  Second, 
only a few of the several hundred tasks within OTB are currently affected by the TESTIM 
algorithms.  We believe that once additional tasks and decisions within OTB are affected by 
TESTIM, the larger the impact of training and stressors will have on overall performance.    
 

Conclusions 
 

In this project, we feel that we have developed an innovative way to link training and 
stressors to performance.  We have collected some empirical data from soldiers to anchor and 
populate the algorithms.  We have developed an authoring tool for developing custom training 
and stressor effects.  We have implemented a robust and scalable approach for linking human 
performance calculations to constructive simulations. 
 

The algorithms, software, and Performance Server architecture for improving the realism 
of CGF have been developed and demonstrated.  However, only a very small number of CGF 
behaviors have been addressed with this approach to date.  Countless more need to be addressed 
before the claim to have truly ‘improved the realism of CGF’ can be made.  Behaviors need to be 
identified in OTB and models need to be developed to address those behaviors.  Human 
performance data also need to be collected to make the models valid.  Better, quantifiable 
training effects data are especially needed. 
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A number of opportunities for synergy between the HSI and training communities and 
the virtual simulation developers can help to accommodate these needs.   The HSI community 
has been developing human performance models of military operations for several years.  Many 
of these models include the same behaviors that need to be improved in CGF.  Many of these 
models have also been validated.  If an extensive list of behaviors from simulations like OTB 
were developed, the wealth of HSI models could be used as a starting point for Performance 
Server models rather than starting from scratch. 
 

A second opportunity for synergy is that most of the HSI models have been designed and 
developed to help analysts identify ‘high driver’ behaviors.  That is; behaviors that are critical 
determinants of total system performance.  Training personnel and commanders who develop 
OTB scenarios to train soldiers can use this information to be sure that the scenarios include 
practice using these kind of tasks and scenarios. 
 

To address the desperate need for quantifiable data on how training affects performance, 
data could be collected from the man-in-the-loop simulators to record how the human 
participants perform on critical tasks.  If data were also collected on the amount and type of 
training each participant has had prior to the simulation exercise it could eventually be 
determined how training affects performance.  This would be a long and arduous study but it 
would be very non-intrusive to the soldiers and the combat units.   The result of exploiting this 
kind of opportunity for synergy would be an expanding empirical data set to further our 
understanding of the impact of training on performance. 
 

A fourth opportunity for synergy also exploits man-in-the-loop simulation as a data 
collection opportunity.  By collecting data on exactly what the man-in-the-loop does during the 
simulation, network models of task performance could be extracted from the data for building 
additional Performance Server models.  This information could also be passed on to the HSI 
community to help improve their models and build new ones, ultimately supporting the use of 
quantitative analyses to support system acquisition. 
 

The work described in this report represents a way for human performance professionals 
to get involved in the development of virtual simulations without interfering with the 
development or with the training community’s ability to achieve their goals of providing cost-
effective training opportunities.  It also describes several potential ways that the training, HSI, 
and simulation communities can work together to share the products of their work. 
 

Follow-On Recommendations 
 

The work performed for this effort represents a first step in incorporating research that 
has been done on the effects of training and performance shaping factors into algorithms and 
data structures that can be applied to a variety of human performance modeling environments.  
However, it is only a first step.  Different research programs around the world are collecting data 
to understand the complex interactions of humans with factors that influence their performance.  
Based on this research, there is the potential that some of the algorithms within TESTIM will 
need to be modified to allow human performance modeling to more accurately predict the way 
that humans actually behave under a variety of conditions.   
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A second opportunity for follow-on work is to identify additional hooks and vehicles in 
OTB to be modified by TESTIM.  Currently, TESTIM affects the task times for assault, load, 
track, subsequent load, and subsequent track in OTB.  TESTIM also affects the decision for 
moving to an alternate position during a hasty occupy position.  Allowing TESTIM to affect 
other hooks in OTB would increase the realism of the OTB simulations.  The following is a list 
of potential hooks we might affect:   

 
1. Vehicle level hooks 

a. Change the amount of time an entity spends in its hidden position during an 
occupy position task.   

b. Change how close indirect fire needs to land next to an entity before the entity 
will consider it accurate fire 

 
2. Unit level hooks 

a. Change what percentage of the assaulting unit must be destroyed before 
stopping the assault  

b. Change how soon a unit reassesses its enemy situation after reacting to enemy 
contact by deploying smoke 

c. Modify a unit’s reaction to enemy contact 
d. Modify the distance that a unit will advance beyond the objective to secure a 

defendable position   
e. Modify the width of the defensive position assumed after the assault.  
f. Change the distance between an entity’s primary and alternate firing positions 
g. Change when a unit determines if it is blocked by smoke 
h. Change the amount of smoke coverage an entity uses during a withdraw 

 
A third opportunity for follow-on work is to integrate decision-making models with 

TESTIM and include more robust branching logic to represent human decision-making.  At those 
decision points where an entity must decide what to do, we can represent the underlying decision 
making process which, in turn, can be conditioned by a variety of factors, rather than depending 
solely on irreducible probabilities that dictate what the entity decides to do.  In this context, the 
underlying human performance model can be as simple as a handful of production rules that 
define what the entity will do given the current state of the environment.  Alternatively, we might 
embed a more nuanced model of the human decision-making process.  For instance, we could 
include a “naturalistic” model of decision-making currently under development at MA&D.  In 
place of rigid production rules, this model makes use of a fuzzy recognition routine together with 
a model of the decision-maker’s long-term memory to determine the appropriate course of 
action.  Thus, decisions are made on the basis of the agent’s experience and, moreover, can be 
affected by both changes in that experience and by the effects of stress and uncertainty.   
 

Finally, there is the potential to incorporate additional functionality to the Performance 
Server.  This includes the following:   
 

�� Using HLA instead of DIS as the network protocol.   
HLA is more stable than DIS. 
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�� Allowing for dynamic subscription.   
This allows for the possibility of decreasing processor load, thus requiring 
fewer computers to run a simulation. 

��

�� Allowing for the push of information rather than the pull of information. 
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Appendix A 
Training Effects Data Collection Questionnaire 

 
Micro Analysis and Design is working with the Army Research Institute to develop a 

usable model of training that can be embedded into Computer Generated Force (CGF) models.  
The primary goal of this effort is to develop algorithms and data structures for including the 
effects of training into these models.  The tasks for which we are asking you to provide training 
estimates are the 38 top level tasks from the ARTEP 17-237-10 Mission Training Plans (MTP) 
for Tank Platoons.  We need to collect data on how much training and what kind of training you 
received for each MTP task for each of the four previous quarters.  For each task we also need to 
collect data on your initial ability and the maximum amount of benefit you feel that each type of 
training can provide you.  The challenge of this effort is for us to be able to generalize the effects 
of several training variables across all of the tasks that soldiers can perform.  We need help from 
subject matter expert soldiers to provide estimates of data that will serve as input into our model.   
 

Please note that the information obtained from this questionnaire will in NO WAY be 
used as an evaluation mechanism for either you or your unit.  We will not be collecting the 
names or the units of the soldiers that participate in this data collection effort.  The sincerity of 
your responses will contribute to the accuracy of our training effects model.  The following 
describes the process for completing the questionnaire and examples of hypothetical entries.    
 
For each task: 
 

1. Enter your innate proficiency in percentage.  Your innate proficiency on a task is how 
well you performed the task the first time you performed it (i.e. after a minimal amount 
of training). 

2. Enter asymptotes for each type of training.  The asymptote is the highest level of 
proficiency you feel that you can get to after training with a particular type of training.  

3. Enter your percent proficiency at the beginning of the last year. 
 
For each quarter and each task: 
 

4. Enter the number of hours of each type of training you received. 
5. Enter your percent proficiency at the end of the quarter. 

 
Repeat steps 3 through 5 for each quarter in the past year, starting with the beginning of the 
previous year.  It may be helpful for you to obtain your training records for the last year.  
 
Example 
 

The following example illustrates a sample set of data from a soldier regarding his 
training on Platoon Battle Drills.  The first portion of the survey involved the soldier entering in 
his innate proficiency for each task and asymptotes for each type of training for each task.  For 
the first task (Change of Formation Drill), the soldier said that he believes that the first time he 
perform this task he did it at only 20% proficiency.  He also believes that if he were only to have 
classroom training, no simulator or field, that he would only be able to reach a proficiency level 
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of 50%.  This means that no matter how many hours of classroom training he receives he would 
never get any better at the task then 50% without simulator or field training.  For this same task 
he believes that simulator training could get him to 90% proficiency and field training could get 
him all the way to 98% proficiency.  This means that he feels that a simulator could train him 
such that he makes errors 10% of the time while performing the task, but only field training can 
make it so that he only makes errors 2% of the time.  
 

In the second part of the sample survey the soldier indicates how much training he has 
had for each task during each quarter over the last year.  In this example we only examine the 
soldiers first quarter of training on a few tasks.  For the first task (Change of Formation Drill), 
the soldier received no training and he believed that his proficiency at this task remained the 
same from the beginning to the end of the quarter.  For the second task (Contact Drill), the 
soldier received 20 hours of field training and 2 hours of classroom training.  The soldier felt that 
his proficiency at the beginning of the quarter was 75% and it improved to 85% at the end of the 
quarter.  In the third task (Action Drill), the soldier received 16 hours of field training, 4 hours of 
simulator training, and 1 hour of classroom training.  He indicated that this training resulted in an 
increase in his ability to perform the task by 10%.  
 

The questionnaire can also be used to describe and evaluate a decrease in proficiency for 
the quarter.  In the example task 4 (React to Indirect Fire), the soldier believed he had a 
proficiency of 80% at the beginning of the quarter.  However, due to a lack of training he felt 
that his proficiency had dropped to 70% by the end of the quarter.  Please note that the values 
chosen for these examples are to illustrate the process for completing the questionnaire and are 
not meant as realistic training values. 
 
Sample Questionnaire Data: 
General Information for Each Task 
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BOS: PLATOON BATTLE DRILLS     
Change of Formation Drill (BD-1) 20 98 90 50 
Contact Drill (BD-2) 30 95 95 50 
Action Drill (BD-3) 20 95 80 60 
React to Indirect Fire Drill (BD-4) 25 98 90 60 
React to Air Attack Drill (BD-5) 15 90 90 40 
React to a Nuclear Attack Drill (BD-6) 10 90 85 40 
React to a Chemical/Biological Attack Drill (BD-7) 10 90 85 40 
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Information for Each Task for Quarter 1 
 
 
 
 
 
 

ARTEP 17-237-10-MTP TANK PLATOON 
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BOS: PLATOON BATTLE DRILLS      
Change of Formation Drill (BD-1) 80 0 0 0 80 
Contact Drill (BD-2) 75 20 0 2 85 
Action Drill (BD-3) 80 16 4 1 90 
React to Indirect Fire Drill (BD-4) 80 0 0 0 70 
React to Air Attack Drill (BD-5) 75 20 0 1 85 
React to a Nuclear Attack Drill (BD-6) 60 10 0 4 80 
React to a Chemical/Biological Attack Drill (BD-7) 60 10 0 4 80 
 
 
 
 
 

DEFINITION:  For the purpose of this questionnaire, we define 100% proficient as 
being able to perform the task without any errors 100% of the time. 
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TRAINING EFFECTS QUESTIONNAIRE: GENERAL 
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BOS: COMMAND AND CONTROL     
Conduct Troop-Leading Procedures (17-3-0065)     
Conduct Assembly Area Activities (17-3-2000)     
Conduct Linkup (17-3-2760)     
BOS: INTELLIGENCE     
Establish Observation Posts (17-3-1039)     
BOS: MANEUVER     
Conduct Bypass Operations (17-3-2420)     
Conduct Convoy Escort (17-3-2320)     
Coord/Conduct a Passage of Lines Forward/Rearward (17-3-1014)     
Conduct Tactical Movement (17-3-1016)     
Conduct a Tactical Road March (17-3-0212)     
Execute Actions on Contact (17-3-0221)     
Destroy an Inferior Force (17-3-2450)     
Assault an Enemy Position (17-3-0220)     
Conduct an Attack by Fire (17-3-0219)     
Conduct Overwatch/Support by Fire (17-3-3061)     
Conduct Reconnaissance by Fire (17-3-0218)     
Follow and Support (17-3-2269)     
Coord/Assist a Passage of Lines Forward/Rearward (17-3-0214)     
Disengage from the enemy (17-3-2380)     
Conduct Deliberate Occupation of a Platoon BP (17-3-2602)     
Conduct Hasty Occupation of a Platoon BP (17-3-2601)     
Conduct a Perimeter Defense (17-3-2632)     
Conduct a Platoon Defense (17-3-2605)     
Conduct a Relief in Place (17-3-1025)     
Displace to a Successive/Alt Platoon BP (17-3-2625)     
BOS: MOBILITY AND SURVIVABILITY     
Conduct Breach Force Operations (17-3-3070)     
Conduct Operational Decontamination (3-3-C016)     
Cross an NBC Contaminated Area (17-3-8143)     
Emplace and Retrieve a Hasty Obstacle (17-3-1026)     
BOS: AIR DEFENSE     
Conduct Passive Air Defense Measures (44-3-C001)     
BOS: COMBAT SERVICE SUPPORT     
Conduct Consolidation and Reorg Activities (12-3-C021)     
Conduct Resupply Operations (17-3-0601)     
BOS: PLATOON BATTLE DRILLS     
Change of Formation Drill (BD-1)     
Contact Drill (BD-2)     
Action Drill (BD-3)     
React to Indirect Fire Drill (BD-4)     
React to Air Attack Drill (BD-5)     
React to a Nuclear Attack Drill (BD-6)     
React to a Chemical/Biological Attack Drill (BD-7)     
TANK GUNNERY     
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TRAINING EFFECTS QUESTIONNAIRE: QUARTER 1 
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BOS: COMMAND AND CONTROL      
Conduct Troop-Leading Procedures (17-3-0065)      
Conduct Assembly Area Activities (17-3-2000)      
Conduct Linkup (17-3-2760)      
BOS: INTELLIGENCE      
Establish Observation Posts (17-3-1039)      
BOS: MANEUVER      
Conduct Bypass Operations (17-3-2420)      
Conduct Convoy Escort (17-3-2320)      
Coord/Conduct a Passage of Lines Forward/Rearward (17-3-1014)      
Conduct Tactical Movement (17-3-1016)      
Conduct a Tactical Road March (17-3-0212)      
Execute Actions on Contact (17-3-0221)      
Destroy an Inferior Force (17-3-2450)      
Assault an Enemy Position (17-3-0220)      
Conduct an Attack by Fire (17-3-0219)      
Conduct Overwatch/Support by Fire (17-3-3061)      
Conduct Reconnaissance by Fire (17-3-0218)      
Follow and Support (17-3-2269)      
Coord/Assist a Passage of Lines Forward/Rearward (17-3-0214)      
Disengage from the enemy (17-3-2380)      
Conduct Deliberate Occupation of a Platoon BP (17-3-2602)      
Conduct Hasty Occupation of a Platoon BP (17-3-2601)      
Conduct a Perimeter Defense (17-3-2632)      
Conduct a Platoon Defense (17-3-2605)      
Conduct a Relief in Place (17-3-1025)      
Displace to a Successive/Alt Platoon BP (17-3-2625)      
BOS: MOBILITY AND SURVIVABILITY      
Conduct Breach Force Operations (17-3-3070)      
Conduct Operational Decontamination (3-3-C016)      
Cross an NBC Contaminated Area (17-3-8143)      
Emplace and Retrieve a Hasty Obstacle (17-3-1026)      
BOS: AIR DEFENSE      
Conduct Passive Air Defense Measures (44-3-C001)      
BOS: COMBAT SERVICE SUPPORT      
Conduct Consolidation and Reorg Activities (12-3-C021)      
Conduct Resupply Operations (17-3-0601)      
BOS: PLATOON BATTLE DRILLS      
Change of Formation Drill (BD-1)      
Contact Drill (BD-2)      
Action Drill (BD-3)      
React to Indirect Fire Drill (BD-4)      
React to Air Attack Drill (BD-5)      
React to a Nuclear Attack Drill (BD-6)      
React to a Chemical/Biological Attack Drill (BD-7)      
TANK GUNNERY      
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TRAINING EFFECTS QUESTIONNAIRE: QUARTER 2 
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BOS: COMMAND AND CONTROL     
Conduct Troop-Leading Procedures (17-3-0065)     
Conduct Assembly Area Activities (17-3-2000)     
Conduct Linkup (17-3-2760)     
BOS: INTELLIGENCE     
Establish Observation Posts (17-3-1039)     
BOS: MANEUVER     
Conduct Bypass Operations (17-3-2420)     
Conduct Convoy Escort (17-3-2320)     
Coord/Conduct a Passage of Lines Forward/Rearward (17-3-1014)     
Conduct Tactical Movement (17-3-1016)     
Conduct a Tactical Road March (17-3-0212)     
Execute Actions on Contact (17-3-0221)     
Destroy an Inferior Force (17-3-2450)     
Assault an Enemy Position (17-3-0220)     
Conduct an Attack by Fire (17-3-0219)     
Conduct Overwatch/Support by Fire (17-3-3061)     
Conduct Reconnaissance by Fire (17-3-0218)     
Follow and Support (17-3-2269)     
Coord/Assist a Passage of Lines Forward/Rearward (17-3-0214)     
Disengage from the enemy (17-3-2380)     
Conduct Deliberate Occupation of a Platoon BP (17-3-2602)     
Conduct Hasty Occupation of a Platoon BP (17-3-2601)     
Conduct a Perimeter Defense (17-3-2632)     
Conduct a Platoon Defense (17-3-2605)     
Conduct a Relief in Place (17-3-1025)     
Displace to a Successive/Alt Platoon BP (17-3-2625)     
BOS: MOBILITY AND SURVIVABILITY     
Conduct Breach Force Operations (17-3-3070)     
Conduct Operational Decontamination (3-3-C016)     
Cross an NBC Contaminated Area (17-3-8143)     
Emplace and Retrieve a Hasty Obstacle (17-3-1026)     
BOS: AIR DEFENSE     
Conduct Passive Air Defense Measures (44-3-C001)     
BOS: COMBAT SERVICE SUPPORT     
Conduct Consolidation and Reorg Activities (12-3-C021)     
Conduct Resupply Operations (17-3-0601)     
BOS: PLATOON BATTLE DRILLS     
Change of Formation Drill (BD-1)     
Contact Drill (BD-2)     
Action Drill (BD-3)     

    
React to Air Attack Drill (BD-5)     
React to a Nuclear Attack Drill (BD-6)     
React to a Chemical/Biological Attack Drill (BD-7)     
TANK GUNNERY     

React to Indirect Fire Drill (BD-4) 
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TRAINING EFFECTS QUESTIONNAIRE: QUARTER 3 
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BOS: COMMAND AND CONTROL     
Conduct Troop-Leading Procedures (17-3-0065)     
Conduct Assembly Area Activities (17-3-2000)     
Conduct Linkup (17-3-2760)     
BOS: INTELLIGENCE     
Establish Observation Posts (17-3-1039)     
BOS: MANEUVER     
Conduct Bypass Operations (17-3-2420)     
Conduct Convoy Escort (17-3-2320)     
Coord/Conduct a Passage of Lines Forward/Rearward (17-3-1014)     
Conduct Tactical Movement (17-3-1016)     
Conduct a Tactical Road March (17-3-0212)     
Execute Actions on Contact (17-3-0221)     
Destroy an Inferior Force (17-3-2450)     
Assault an Enemy Position (17-3-0220)     
Conduct an Attack by Fire (17-3-0219)     
Conduct Overwatch/Support by Fire (17-3-3061)     
Conduct Reconnaissance by Fire (17-3-0218)     
Follow and Support (17-3-2269)     
Coord/Assist a Passage of Lines Forward/Rearward (17-3-0214)     
Disengage from the enemy (17-3-2380)     
Conduct Deliberate Occupation of a Platoon BP (17-3-2602)     
Conduct Hasty Occupation of a Platoon BP (17-3-2601)     
Conduct a Perimeter Defense (17-3-2632)     
Conduct a Platoon Defense (17-3-2605)     
Conduct a Relief in Place (17-3-1025)     
Displace to a Successive/Alt Platoon BP (17-3-2625)     
BOS: MOBILITY AND SURVIVABILITY     
Conduct Breach Force Operations (17-3-3070)     
Conduct Operational Decontamination (3-3-C016)     
Cross an NBC Contaminated Area (17-3-8143)     
Emplace and Retrieve a Hasty Obstacle (17-3-1026)     
BOS: AIR DEFENSE     
Conduct Passive Air Defense Measures (44-3-C001)     
BOS: COMBAT SERVICE SUPPORT     
Conduct Consolidation and Reorg Activities (12-3-C021)     
Conduct Resupply Operations (17-3-0601)     
BOS: PLATOON BATTLE DRILLS     
Change of Formation Drill (BD-1)     
Contact Drill (BD-2)     
Action Drill (BD-3)     
React to Indirect Fire Drill (BD-4)     
React to Air Attack Drill (BD-5)     
React to a Nuclear Attack Drill (BD-6)     
React to a Chemical/Biological Attack Drill (BD-7)     
TANK GUNNERY     
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TRAINING EFFECTS QUESTIONNAIRE: QUARTER 4 
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BOS: COMMAND AND CONTROL     
Conduct Troop-Leading Procedures (17-3-0065)     
Conduct Assembly Area Activities (17-3-2000)     
Conduct Linkup (17-3-2760)     
BOS: INTELLIGENCE     
Establish Observation Posts (17-3-1039)     
BOS: MANEUVER     
Conduct Bypass Operations (17-3-2420)     
Conduct Convoy Escort (17-3-2320)     
Coord/Conduct a Passage of Lines Forward/Rearward (17-3-1014)     
Conduct Tactical Movement (17-3-1016)     
Conduct a Tactical Road March (17-3-0212)     
Execute Actions on Contact (17-3-0221)     
Destroy an Inferior Force (17-3-2450)     
Assault an Enemy Position (17-3-0220)     
Conduct an Attack by Fire (17-3-0219)     
Conduct Overwatch/Support by Fire (17-3-3061)     
Conduct Reconnaissance by Fire (17-3-0218)     
Follow and Support (17-3-2269)     
Coord/Assist a Passage of Lines Forward/Rearward (17-3-0214)     
Disengage from the enemy (17-3-2380)     
Conduct Deliberate Occupation of a Platoon BP (17-3-2602)     
Conduct Hasty Occupation of a Platoon BP (17-3-2601)     
Conduct a Perimeter Defense (17-3-2632)     
Conduct a Platoon Defense (17-3-2605)     
Conduct a Relief in Place (17-3-1025)     
Displace to a Successive/Alt Platoon BP (17-3-2625)     
BOS: MOBILITY AND SURVIVABILITY     
Conduct Breach Force Operations (17-3-3070)     
Conduct Operational Decontamination (3-3-C016)     
Cross an NBC Contaminated Area (17-3-8143)     
Emplace and Retrieve a Hasty Obstacle (17-3-1026)     
BOS: AIR DEFENSE     
Conduct Passive Air Defense Measures (44-3-C001)     
BOS: COMBAT SERVICE SUPPORT     
Conduct Consolidation and Reorg Activities (12-3-C021)     
Conduct Resupply Operations (17-3-0601)     
BOS: PLATOON BATTLE DRILLS     
Change of Formation Drill (BD-1)     
Contact Drill (BD-2)     
Action Drill (BD-3)     
React to Indirect Fire Drill (BD-4)     
React to Air Attack Drill (BD-5)     
React to a Nuclear Attack Drill (BD-6)     
React to a Chemical/Biological Attack Drill (BD-7)     
TANK GUNNERY     
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Appendix B 
Building Performance Server Models 

 
This appendix contains information on how to build discrete event simulation models that 

can be inserted into the Performance Server.  The code is specific to the software Micro Saint, 
but the same algorithms can be applied to any simulation software that is COM enabled.  Note 
that this appendix assumes that the user already has basic knowledge on how to build models in 
Micro Saint.  The code below includes the specific information that must be added to the models 
in order for them to be used by TESTIM. 
 

15000
Dummy 
Start

30000
Counter 
Pause

30001
Counter 
Pause 

500
Init

7
DeleteEnti
ty

701
Delete 
Done

999999
Start(5,ta
g)

 
 
Figure B-1. Base model. 
 

When building a performance server model for the first time, the user must have 1) the 
basic model (see Figure B-1) to start from that contains tasks that every Performance Server 
model requires and 2) predefined user functions.  From a top-level view, a Performance Server 
model consists of two parts: the initiating task and the network that contains the Performance 
Server model (see Figure B-2).    
 

1
Start 
(1,tag)

100
Tracktime

 
 
Figure B-2. Performance Server model. 
 

Inside the initiating task, the following code must be entered into the Beginning Effect 
(see Figure B-3): 

 
n += 1; 
MAPSTRESSCHK; 
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Figure B-3. Beginning Effect of the initiating task. 
 

Inside the performance server model network, each task needs the following code in the 
Beginning Effect (see Figure B-4): 

 
CurTask := task(); 

 
If the performance server model is time based, each task has a time component needs the 
following code in the Mean Time description box (see Figure B-4): 
 

BaseMean := x; {where x represents the base mean time for this task.} 
{A time distribution that the best represents the task, this distribution should use the 

 variable NewMean[CurTask, tag] where the mean time is normally entered.} 
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Figure B-4. Server task mean time and beginning effect. 
 

If the performance server model is time based, the user must create an array variable that 
records the clock time when the model is started.  When the model is finished executing, the 
model must subtract the start time from the clock time to obtain the time it took to perform that 
Performance Server model.  This variable needs to be a single dimensional array (of type real 
and external) of size 1000, so that the changes in task time can be sent to the Middleware and 
then TESTIM (see Figure B-5). 
 

 
 
Figure B-5. Performance server model timing code. 
 

When the model has been developed and completed the user must connect the 
performance server model network to task 30000 (see Figure B-6). 
 

3
Start 
(3,tag)

300
Subsequent
 Tracktime

30000
Counter 
Pause

30001
Counter 
Pause

 
 
Figure B-6. Full performance server model. 
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